Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.96~{\rm TeV}$

Piyali Banerjee Universite de Montreal

April 16, 2009

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Plan of the talk I

- Theory of Large Extra Dimensions (LED)
- Tevatron Accelerator
- DØ Detector
- Data Analysis
- Efficiencies
- Background Estimation
- Monte Carlo Signal Generation
- Systematics
- Limit Setting
- Result

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Theory Of LED I

- Standard Model (SM) based on $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry.
- Describes interaction of bosons and fermions.
- Gravity is not included

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

The Hierarchy and naturalness problem

- electroweak scale: ~ 100 GeV
 - ▷ M_w = 80 GeV, M_z = 91 GeV, vev (H) = 246 GeV
- → Planck scale: E_{Pl} (hc⁵/G)^{1/2} 1.2 10¹⁹ GeV = length 1.6 10⁻³² mm

> energy at which quantum effects of gravity become important

Why are the two scales so different ???

Radiative corrections to Higgs mass diverge in the SM !

For
$$\Lambda = 10$$
 TeV,
 $\rightarrow \delta m_h^2 \sim \left| -\frac{3}{8\pi^2} \lambda_i^2 \Lambda^2 - (2 \text{ TeV})^2 \right| \frac{1}{16\pi^2} g^2 \Lambda^2 \sim (700 \text{ GeV})^2 \left| \frac{1}{16\pi^2} \lambda^2 \Lambda^2 \sim (500 \text{ GeV})^2 \right|$

o fine tuning ?? higher order terms must cancel very precisely

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Theory Of LED I

"TeV scale extra dimensional model → LED (Arkani-Hamed,Dimopoulos and Dvali)"

- large spatial compactified dimensions n to our normal 3+1 dimensional space-time universe
- 3+1 (3-brane) dimensions form a n+4 (bulk) dimensional universe.

• SM particles are pinned to this 3-brane while gravity via graviton can propagate into these additional *n* space dimensions

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Theory Of LED II

• Gauss's Law gives; Planck scale $M_s,$ observed Planck scale $M_{Pl},$ the size of the extra dimension R and number of extra dimensions n

$$[M_{Pl}]^2 \sim R^n \, [M_s]^{n+2} \tag{0.1}$$

- $\bullet\,$ If R can be large compared to Planck length, M_s can be as low as TeV
- The fundamental Planck scale is now at TeV, the hierarchy problem is avoided
- If $M_s \sim 1$ TeV then R goes as $10^{(30/n)-19}$ m, so $R \sim 10^{11}m$ for n = 1, $\sim 1mm$ for n = 2, $\sim 3nm$ for n = 3, $\sim 10fm$ for n = 6.

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Theory Of LED III

• probe for LED must be through the graviton interactions.

$$\phi(x,y) = \sum_{k_1} \cdots \sum_{k_n} \phi^{(k)}(x) e^{i\vec{k}\cdot\vec{y}/R}$$
(0.2)

- A graviton in the extra dimensions is equivalent from the 3+1 dimensional point of view to a tower of infinite number of Kaluza-Klein (KK) states with mass = ^{2πk}/_R, k = 0, 1, 2,∞.
- The coupling strength of each of the KK states is $\frac{1}{M_{Pl}}$.
- A large number of modes can be excited at energy ${\sf O}(M_s)$

Signatures of LED in Collider Experiment I

The collider based limits on M_s come from two channels:

- direct graviton emission
- virtual graviton emission

Gravity effects interfere with SM production amplitudes. Three terms contributing to production cross section: SM, interference, direct gravity effects:

$$\frac{d^2\sigma}{dMd\cos\theta^*} = f_{SM} + \eta_G f_{int} + \eta_G^2 f_{KK}$$
(0.3)

where f_{SM} , f_{int} and f_{KK} are functions of $(M \cos \theta^*)$. Piyali Banerjee Universite de Montreal Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s} = 1.9$

Signatures of LED in Collider Experiment II

• Effect of ED parameterized by a single variable:

$$\eta_G = F/M_s^4 \tag{0.4}$$

- **GRW**: (Giudice, Rattazzi, Wells, hep ph/9811291F = 1 (LO)
- **HLZ**: (Han, Lykken, Zhang, hep ph/9811350 $F = \log(M_s^2/s)$ for n = 2, $F = \frac{2}{n-2}$ for n > 2 (subleading n dependence)

 \Rightarrow different invariant mass and $cos\theta^*$ distribution as compared to pure SM process.

Collider

	Experiment	Channel	limits
direct graviton emission	L3	$e^+e^- \rightarrow \gamma(Z)G^k$	$M_d > 1.5 - 0.51$ TeV for $n = 2 - 8$
	all LEP	$e^+e^- \rightarrow \gamma(Z)G^k$	$M_d > 1.6 - 0.66$ TeV for $n = 2 - 6$
	CDF	$p\bar{p} \rightarrow jet + G^k$	$M_d > 0.55 - 0.6$ TeV for $n = 4 - 8$
	DØ	$p\bar{p} \rightarrow jet + G^k$	$M_d > 1 - 0.6$ TeV for $n = 2 - 7$
	DØ	$p\bar{p} \rightarrow \gamma(Z)G^k$	$M_d > 884 - 778 \text{ GeV}$ for $n = 2 - 8$
	CDF	$p\bar{p} \rightarrow \gamma(Z)G^k$	$M_d > 549, 581$ and 601 GeV for n=4, 6, and 8
virtual graviton emission	CDF	$p\bar{p} \rightarrow e^+e^-$ and $\gamma\gamma$	$M_s > 1.17 - 0.79$ TeV for $n = 3 - 7$
	DØ	$p\bar{p} \rightarrow e^+e^-$ and $\gamma\gamma$	$M_s > 1.0 - 1.4$ TeV for $n = 7 - 2$
	DØ	$p\bar{p} \rightarrow \mu^+ \mu^-$	$M_s > 0.85 - 1.27$ TeV for $n = 7 - 2$

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Non Collider I

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 - のへで

Non Collider II

Constraints on large ED

constraint	δ =2		δ =	3	
	max R (mm)	min M _⊳ (TeV)	max R (mm)	min M _⊳ (TeV)	
Gravitational force law	0.2	0.6			
SN1987A cooling by graviton emission	7 x 10-⁴	10 30	9 x 10⁻ ⁷	0.8 2.5	
Diffuse cosmic ray background $(G^{(k)} \rightarrow \gamma \gamma)$	9 x 10-⁵	25	2 x 10⁻7	1.9	
other reheating scenarios		167		22	
decays after SN explosion		450		30	
heating of neutron stars (trapped <i>G^(k)</i> decaying)	8 x 10 ⁻⁶	90 1700	3.5 x 10 [.]	5 60	

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Tevatron Accelerator I

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Tevatron Accelerator II

Figure: The general layout of the collider facility at Fermilab Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s} = 1.9$

- The Fermilab Accelerator complex accelerates the proton and antiproton to energy of 980 GeV
- Collides at $\sqrt{s}=1.96~{\rm TeV}$ at the two collision points located at CDF and DØ.
- Eight different acclerators (six circular and two linear)
- *H*⁻ ions are made from hydrogen atoms by addition of electrons.
- H^- ions are accelerated by Cockroft-Walton to 750 KeV.
- Linac, 150 m long accelerator raises energy of H^- to 400 MeV
- Enters booster
- Passes through carbon foil which strips of the electrons creating protons.

Figure: Schematic view of the collider facility at Fermilab.

Booster \rightarrow 400 MeV to 8 GeV. Debuncher \rightarrow large energy and narrow time spread into narrow energy and large time spread in 100 msec.

Piyali Banerjee Universite de Montreal Search For Large Extra Dimensions in $par{p}$ collider at $\sqrt{s}=1.9$

DØ Detector I

Figure: A view of the DØ Run II upgraded detector.

- Weighs 5500 tons, measures 13m(height) \times 11m \times 17m (length)
- The DØ uses right handed cylindrical coordinate system such that the direction of the protons is the positive z direction positive y direction points up.

DØ Detector II

- ullet Transverse spread \sim 30 microns; longitudinal spread \sim 30 cm
- Luminosity monitor at $z=140~{\rm cm}$ measures inelastic $p\bar{p}$ collisions

$$N = \sigma L \tag{0.5}$$

• 2.37 m long beryllium beam pipe and extends radially 37.6 - 38.1 mm

Piyali Banerjee Universite de Montreal

 $<\Box><\overline{B}><\overline{B}><\overline{B}><\overline{B}><\overline{B}><\overline{B}><\overline{B}><\overline{B}><\overline{B}><\overline{B}><\overline{B}><\overline{B}>$ Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

DØ Detector III

Primary interaction vertex, resolution $\sim 35 \ \mu m$ along z Position resolution 15 μ m in r- ϕ Momentum resolution ~ 5% for $p_T \simeq 10$ GeV at $|\eta| = 0$ Silicon module \Rightarrow "ladders", Barrels-|z| = 6.2, 19, 31.8cmH-disks-|z| = 100.4, 121cm $\mathsf{F}\text{-disks}|z| = 12.5, 25.3, 38.2, 43.1, 48.1, 53.1 cm$ Secondary vertex resolution \sim 40 $\mu{\rm m}$ in r- ϕ and \sim 80 $\mu{\rm m}$ in r-z Scintillating fibers CENTRAL CALORIMETER CRYDSTAT WA 8 concentric cylinders SOLENOID (20 cm - 52 cm) Eight doublet layers 2 axial and two stereo at ± 3 SMT $|\eta| < 1.7$ where i, j = 1,...,8 + Z ---

Light from the fibers is converted to electrical pulse(Visible light photon Counters)

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

$\mathsf{D} \ensuremath{\varnothing}$ Detector IV

Momentum resolution $\sim 8\%$ for $p_T\simeq 45~{\rm GeV}$ Position resolution $\simeq 100 \mu m$

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

$D \ensuremath{\ensuremath{\mathcal{O}}}$ Detector V

CPS covers $|\eta|<1.3$ and extends radially (71.19 - 73.61) cm FPS covers $1.5<|\eta|<2.5$, has mip and shower layers Shower layer made of scintillating strips (axial + stereo $\pm23^0$) for CPS

Piyali Banerjee Universite de Montreal

DØ Detector VI

 $1.4, 2, 6.8, 9.8X_0$ thick in CC and $1.6, 2.6, 7.9, 9.3X_0$ in EC for EM calorimeter

128.9 X_0 thick in CC, 373 X_0 thick in EC for Hadronic Calorimeter 0.76, 3.2, 3.3 λ in CC 0.95, 4.9, 3.6, 4, 4.1, 7 λ in EC

Piyali Banerjee Universite de Montreal

DØ Detector VII

The Scintillators are used for triggering The wire chambers are used for coordinate measurement and triggering

Piyali Banerjee Universite de Montreal

DØ Detector VIII

L1 Trigger terms

CEM(1, 9)CEM(2, 3) : one EM trigger tower with $E_T > 9$ GeV, and another EM trigger tower with $E_T > 3 \text{ GeV}$

CEM(1, 12) : one EM trigger tower with $E_T > 12$ GeV

L2 Trigger terms

L2CALEM(1,15) : one standard L2 EM cluster with a threshold $E_T > 15$ GeV

L2CALEM(1.11.0.2) : one single EM cluster with isolation < 0.2 and $E_T >= 11$ GeV

L3 trigger terms

ELE_NLV(2,20): two electrons with $E_T > 20$ GeV satisfying loose requirements and with $|\eta| < 3.6$ **ELE_NLV_SHT(1,25)** : one electron with $|\eta| < 3.6$ and $E_T > 25$ GeV passing tight shower shape cuts

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s} = 1.9$

Data Analysis I

Since RunII, $3 fb^{-1}$ of data to tape. This analysis is based on $1.1 fb^{-1}$ of data (October 2002 and February 2006). 2EM candidates as final state (photons and electrons) **Cuts Applied: (satisfied by both EM candidates)**

- Remove all events calorimeter bad runs and luminosity blocks.
- Passes OR of single and di-EM Triggers
- $|\eta| < 1.1$ (Central Calorimeter, CC) and $1.5 < |\eta| < 2.4$ (EndCap Calorimeter, EC)
- p_T of the EM candidate should be above 25 GeV
- Fraction of energy in the electromagnetic calorimeter $f_{EM} > 0.97$ for CC and $f_{EM} > 0.97$ for EC.
- Fraction of energy in the isolation cone $\frac{E_{Tot}(0.4) E_{EM}(0.2)}{E_{EM}(0.2)} = f_{iso} < 0.07$

Data Analysis II

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Data Analysis III

- Sum of transverse momenta of tracks in a hollow cone p_{iso} within $0.05 < \Delta R < 0.4$, with respect to the direction of the EM candidate should be $< 2 \, GeV$ in CC, and $< 1 \, GeV$ in EC, where $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$
- Electromagentic shower shape profile be consistent with that of an electron or photon using a χ^2 test cut with different shower shape variables should be
 - \triangleright 7 × 7 H-matrix $\chi^2 < 12$ in CC.
 - \triangleright 8 × 8 H-matrix $\chi^2 < 20$ in EC.
- Variables constructed with Forward Pre Shower I) Energy of the highest energy cluster from all the matched FPS clusters in the shower layer $E_{shower} < 0.12$ GeV II) Number of matched FPS clusters in the shower layer must be <= 4.

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

" Observed number of Events (N_{Obs})"

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Efficiency Determination: I

The same dataset is used to determine the di-EM detection efficiency. Efficiencies needed

- (I) Trigger efficiency for various trigger versions.
- (II) Efficiency due to shower shape (H-matrix χ^2) cuts.
- (III) Combined efficiency due to EM-fraction (f_{EM}) and isolation $(f_{iso} \text{ and } p_{iso})$ cuts.
- \triangleright Determined efficiency as a function of p_T and η
- Folded these efficiencies into MonteCarlo

Efficiency Determination: II

Figure: pT turn of "OR" of all the single and di-EM triggers from all the four different trigger versions in **Left:** CC **Right:** EC

Piyali Banerjee Universite de Montreal

Efficiency Determination: III

For a given set of OR-ing of triggers from a trigger version the efficiency is given by

$$\epsilon_{tot}^{v12} = 1 - (1 - \epsilon(p_{T1})) * (1 - \epsilon(p_{T2}))$$
(0.6)

Here ϵ_{tot}^{v12} is the total efficiency for all the triggers from version 12. Combined efficiency for the event to pass OR of single and di-EM trigger is

$$P = \epsilon(p_{T1}) + (1 - \epsilon(p_{T1})) * \epsilon(p_{T2}) + (1 - \epsilon(p_{T1})) * (1 - \epsilon(p_{T2})) * D(p_{T1}) * D(p_{T2}) (0.7)$$

where $D(p_{T1})$ and $D(p_{T2})$ be the efficiencies to fire di-EM trigger with momentum p_{T1} and p_{T2} by the two EM candiadates if already failed single-EM trigger.

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Efficiency Determination: IV

$$E_{total} = \frac{\epsilon_{tot}^{v8-v11} \mathcal{L}_{v8-v11} + \epsilon_{tot}^{v12} \mathcal{L}_{v12} + \epsilon_{tot}^{v13} \mathcal{L}_{v13} + \epsilon_{tot}^{v14} \mathcal{L}_{v14}}{\mathcal{L}_{total}} \quad (0.8)$$

where \mathcal{L}_{v8-v11} , \mathcal{L}_{v12} , \mathcal{L}_{v13} , \mathcal{L}_{v14} are the highest recorded luminosity from each trigger version.

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ うへで

Dominant Backgrounds:

- **③** SM processes of Z/Drell-Yan and $\gamma\gamma$
- **2** Instrumental fakes due to dijets and $\gamma + jets$ (QCD)

QCD Background Estimation:

▷ Estimated from data. ▷ Cuts Applied

- pT > 25 GeV (for both EM candidates)
- Either one of the di-EM candidates must satisfy Hmx7 > 20 (CC) Hmx8 > 20 (EC),
- \rightarrow "gives us the shape of QCD ($h_{QCD})$ "

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Background Estimation II

Physics Background:

Physics background is obtained using PYTHIA

 \triangleright Used constant k-factor for both Z/Drell-Yan and $\gamma\gamma$ production

Process	Mass Window (GeV)	LO Cross Section (pb)	Number of Event generated	
DY	60-130	178	264750	
	130-250	1.3	27500	
	250-500	0.11	27000	
	>500	0.0045	25500	
$\gamma\gamma$	50-130	42.7	50500	
	130-250	3.1	51500	
	250-500	0.49	26750	
	>500	0.034	25500	

Table: List of DY and $\gamma\gamma$ MonteCarlo samples used in this analysis

Piyali Banerjee Universite de Montreal

 $<\Box><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}>$ Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Background Estimation III

Both the ee and $\gamma\gamma$ must satisfy

- must either lie in CC or EC
- pT > 25 GeV
- $f_{EM} > 0.97$
- $f_{iso} < 0.07$
- $p_{iso} < 2 \, GeV$ in CC, and $< 1 \, GeV$ in EC
- Hmx7 < 12 (CC) and Hmx8 < 20 (EC)

\rightarrow "gives us the shape of SM (h_{SM})"

To get actual contributions consider the mass interval [60 - 140 GeV] \rightarrow no LED signal

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Background Estimation IV

$$N_{Obs} = A * h_{SM} + B * h_{QCD} \tag{0.9}$$

A and B determined by fit using χ^2 minimization

- Normalized with respect to luminosity for all the 4 mass range
- Normalize both SM and QCD distribution to its Integral in the mass $[60-140]~{\rm GeV}$
- Scale both SM and QCD distribution to total number of observed events in mass [60 140] GeV
- extrapolation of background using A and B for $M > 240 GeV \Rightarrow$ expected background events
- gives us N_{SM} and N_{QCD}

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Background Estimation V

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ● ○ ○ ○

Background Estimation VI

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s} = 1.9$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Background Estimation VII

Table: Number of events observed and expected from SM and multijet background in different mass windows for CC-CC events. Also the individual contributions to the total background events from multijet, e^+e^- and $\gamma\gamma$ are shown separately.

Mass	Data	Total Background	Multijet	$\mathbf{e}^+\mathbf{e}^-$	$\gamma\gamma$
(GeV)	N	$N_b \pm N_b^{\rm sys}$	$N_{\rm MJ}\pm N_{\rm MJ}^{\rm sys}$	$N_{\mathbf{e}^{+}\mathbf{e}^{-}}$	$N_{\gamma\gamma}$
240–290	61	67 ± 8	22 ± 3.1	30	15
290-340	30	28 ± 4	7 ± 1.1	14	7
340–400	21	15 ± 2	3 ± 0.5	7	5
400–500	9	9 ± 1.2	1.4 ± 0.3	5	3
500–600	1	4 ± 1.16	0.14 ± 0.09	2.4	1.1
600-1000	2	1.3 ± 0.07	0.11 ± 0.06	0.67	0.53

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ● ●

Background Estimation VIII

Table: Number of events observed and expected from SM and multijet background in different mass windows for CC-EC events. Also the individual contributions to the total background events from multijet, e^+e^- and $\gamma\gamma$ are shown separately.

Mass	Data	Total Background	Multijet	$\mathbf{e}^+\mathbf{e}^-$	$\gamma\gamma$
(GeV)	N	$N_b \pm N_b^{\rm sys}$	$N_{\rm MJ}\pm N_{\rm MJ}^{\rm sys}$	$N_{\mathbf{e}^{+}\mathbf{e}^{-}}$	$N_{\gamma\gamma}$
240-290	144	171 ± 34	$115\ \pm 34$	34	30
290-340	52	55 ± 11	35 ± 11	12	8
340-400	21	23 ± 5	12 ± 4	7	4
400–500	12	9 ± 2	4 ± 1.5	3.3	1.2
500–600	2	2 ± 0.43	0.59 ± 0.23	0.73	0.18
600-1000	0	0.36 ± 0.07	0.03 ± 0.04	0.24	0.008

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ● ●

LED Signal Generation: I

- Used standalone MonteCarlo generator
- Calculates only tree level cross section
- Detector effects and ISR is taken into account:

 ▷Generated SM and SM+LED cross-sections(σ) separately for both channels for different a given M_s
 ▷Generated for all cosθ* bin for invariant mass [0, 1000] GeV
 ▷Ratio of these two σ gives the enhancement of the SM σ due to LED
 ▷Folded it as weight into (DØ detector simulated) full chain SM(ee and γγ) MonteCarlo generated with PYTHIA
 - \triangleright repeated for various M_s and n.

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

LED Signal Generation: II

Figure: The di-EM invariant mass distributions for CC-CC (a) and CC-EC (b) events.

Piyali Banerjee Universite de Montreal

 $<\Box><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}><\overline{D}>$ Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

LED Signal Generation: III

Figure: The distributions of the center-of-mass scattering angle $\cos \theta^*$ of the two final state EM candidates in CC-CC (a) and CC-EC (b) events.

Piyali Banerjee Universite de Montreal

 $(\Box) * (\bigcirc) * (\odot) * (\bigcirc) * (\odot) * (\odot) * (\bigcirc) * (\odot) * (\bigcirc) * (\odot) * (\bigcirc) * (\odot)$

Sources of Sytematic Uncertainties: I

		CC-CC		CC-EC
Signal only				
	Acceptance	1–19		1.5-12
	Luminosity		4	
Signal and				
background				
	Trigger + EM selection	6		5
	Energy scale	5–13		0.3-3.5
	Energy resolution	0.3–1.7		0.2-3.5
	NLO k-factor		3–10	
	k-factor mass dependence		5	
	PDF		5.5–9	
Background only				
	Multijet	13		30

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Limit Setting: I

 \rightarrow Observed events were compared with LED+SM+QCD for invariant mass $>240~{\rm GeV}$ and \forall $\cos\!\theta^*$ for various M_s

 \rightarrow Repeated for various n.

For a given M_s the expected number of events in the k^{th} mass bin and $l^{th}\,\cos\!\theta^*$ bin is

$$N^{kl}(M_s) = B^{kl} + N^{kl}_{LED}(M_s)$$
(0.10)

 $\rightarrow B^{kl}$ is the combined expected number of background events due to SM physics and fake.

 $\rightarrow N^{kl}_{LED}(M_s)$ is the expected signal events due to LED The **posterior probability** density for a M_s given N^{kl}_{obs} in the k^{th} mass bin and $l^{th}\cos\theta^*$ bin is

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Limit Setting: II

$$P(M_{s}|Data) = \frac{1}{A} \int dB^{kl} dN_{LED}^{kl} \prod_{k=0}^{n} \prod_{l=0}^{m} \left[e^{-N_{M_{s}}^{kl}} \frac{N_{M_{s}}^{kl} N_{obs}^{kl}}{N_{obs}^{kl}!} \right] \times P(M_{s}) \times P(N_{LED}^{kl}(M_{s}) + B^{kl}) \quad (0.11)$$

 \rightarrow Gaussian prior probability distribution $P(N_{LED}^{kl}(M_s)+B^{kl})$ \rightarrow Mean $N_{LED}^{kl}(M_s)+B^{kl}$ and sigma from errors due to uncertainties

- $\rightarrow 1/M_s^4$ prior probability distribution for $P(M_s)$
- \rightarrow No peak in $P(M_s|Data)$ other then at $1/M_s^4=0$
- \rightarrow lower limit, at 95% confidence level, on M_s using a semi-frequentist approach \rightarrow log-likelihood ratio (LLR).

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Limit Setting: III

$$LLR(\vec{s}, \vec{b}, \vec{d}) = -2\ln(Q) = \sum_{i=0}^{N_c} \sum_{j=0}^{N_{bins}} s_{ij} - d_{ij}\ln(1 + \frac{s_{ij}}{b_{ij}}) \quad (0.12)$$

Piyali Banerjee Universite de Montreal

Limit Setting: IV

 $\eta_G = F/M_s^4$, F = 1 for $n_d = 4$ in HLZ and GRW. In GRW the observed limit for M_s is 1.62 TeV. The limit on η_G is < 0.145 TeV^{-4} .

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

Final Limits: I

Figure: Observed and expected limits on the effective Planck scal e, M_s , in the di-EM channel along with previously published limits in di-EM channel.

"Phys. Rev. Lett. 102, 051601 (2009),arXiv.org:0809.2813 "

Final Limits: II

- N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed,
 S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998);
 N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D 59, 086004 (1999); N. Arkani-Hamed, S. Dimopoulos, and
 J. March-Russell, Phys. Rev. D 63, 064020 (2001).
- J. L. Hewett, Phys. Rev. Lett. 82, 4765 (1999); K. Cheung, Phys. Lett. B 460, 383 (1999); K. Cheung and G. Landsberg, Phys. Rev. D 62, 076003 (2000); K. Cheung, Phys. Rev. D 61, 015005 (2000); O. J. P. Eboli et al, Phys. Rev. D 61, 094007 (2000).
- G. Giudice, R. Rattazzi, and J. Wells, Nucl. Phys. **B544**, 3 (1999), and revised version arXiv:hep-ph/9811291.

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Final Limits: III

- T. Han, J. Lykken, and R. Zhang, Phys. Rev. D **59**, 105006 (1999), and revised version arXiv:hep-ph/9811350.
- V. M. Abazov *et al.* (D0 Collaboration), Nucl. Instrum. Methods in Phys. Res. A **565**, 463 (2006).
- B. Abbott *et al.* (D0 Collaboration), Phys. Rev. Lett. **86**, 1156 (2001).
- D. Gerdes et al., Phys. Rev. D 73, 112008 (2006).
- B. Abbott *et al.* (D0 Collaboration), Phys. Rev. Lett. **95**, 161602 (2005).
- B. Abbott *et al.* (D0 Collaboration), Phys. Rev. Lett. **101**, 011601 (2008); T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett. **101**, 181602 (2008).

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Final Limits: IV

- B. Abbott *et al.* (D0 Collaboration), Phys. Rev. D 76, 012003 (2007).
- T. Sjöstrand, S. Mrenna, and P. Skands, JHEP **0605**, 026 (2006); we used version 6.323.
- J. Pumplin *et al.*, JHEP **0207**, 012 (2002); D. Stump *et al.*, JHEP **0310**, 046 (2003).
- R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished).
- P. Mathews, V. Ravindran, K. Sridhar, and W. L. van Neerven, Nucl. Phys. **B713**, 333 (2005); R. Hamberg, W.L. van Neerven, and T. Matsuura, Nucl. Phys. **B359**, 343 (1991) [Erratum-ibid. **B644**, 403 (2002)].

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Final Limits: V

- K. Cheung and G. Landsberg, Phys. Rev. D 62, 076003 (2000).
- T. Junk, Nucl. Instrum. Methods. A 434, 435 (1999); A. Read, "Modified Frequentist Analysis of Search Results(The CLs Method)", CERN 2000-005 (2000); W. Fisher, FERMILAB-TM-2386-E (2007).

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Vote of Thanks: I

Prof N. K. Mondal, Dr A. Meyer, Dr J. Stark, Prof Y. Greshtien, Prof G. Landsberg, EB-012, Prof K Shridhar. Universite de Montreal, Prof Claude LeRoy, Prof Georges Azuelos for supporting me to complete this work.

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

(日) (日) (日) (日) (日) (日) (日)

$$N^{SM} = L \times (\sigma_{NLO}^{DY} \frac{N_{[60-140GeV]}^{DY}}{N_{gen}^{DY}} + \sigma_{NLO}^{\gamma\gamma} \times \frac{N_{[60-140GeV]}^{\gamma\gamma}}{N_{gen}^{\gamma\gamma}})$$
(0.13)

where L is the integrated luminosity. We get $1047.35pb^{-1}$ for L.

N_{gen}^{DY}	$\sigma_{NLO}^{DY}(pb)$	$N^{DY}_{[60-140GeV]}$	$N_{gen}^{\gamma\gamma}$	$N_{[60-140GeV]}^{\gamma\gamma}$	$\sigma_{NLO}^{\gamma\gamma}(pb)$	N^{data}	A	Γ
264750	178×1.34	37342	50500	666	42.7×1.34	45776	0.217	Ι

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ > ◆母 > ◆臣 > ◆臣 > 臣 - のへで

Assuming the same compactification radius R \forall n, gravitational potential of m on unit mass in 4+n dimension is

$$\Phi(r_{\perp},0) = \Sigma_{k=-\infty}^{k=\infty} \frac{G_N^{4+n} \times m}{r_{\perp}^2 + \Sigma_i^n k^2 R_i^2}$$
(0.14)

$$\nabla^2 \Phi = -\frac{2^{n/2}}{\Gamma(n/2)} \times G_N^{3+n} \rho_M M \tag{0.15}$$

where G_N^{3+n} is the Newtons Gravitational constant in 3+n space dimansion and ρ_M is the mass density. Solving for Φ due to gravitational action of m on unit mass in 3 flat space and n compa ctified space dimensions we get

$$\Phi = \frac{G_N^{3+n} \times m}{r_\perp^2 + \Sigma_i^n x_i^2} \tag{0.16}$$

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

(日) (日) (日) (日) (日) (日) (日)

where $x_i \simeq x_i + kR_i$, \forall k. The scalar potential Φ then satisfies the periodic boundary condition $\Phi(0) = \Phi(R) = \Phi(2R) = \dots \Phi(kR)$

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

◆□ > ◆母 > ◆臣 > ◆臣 > 臣 - のへで

Hence we get,

$$\Phi(r_{\perp},0) = \sum_{k=-\infty}^{k=\infty} \frac{G_N^{3+n} \times m}{r_{\perp}^2 + \sum_i^n k^2 R_i^2}$$
(0.17)

For simplicity we assume that $R_i = R$, $\forall R$. Two cases arise out of the equation .I) |r| << R and II) |r| >> R. In casel when m and the unit test mass will feel a 3 + ndimensional gravitational potential and above equation reduces to

$$\Phi = \frac{mG_N^{3+n}}{r^{n+1}} \tag{0.18}$$

In case II when the masses are placed at the distance |r| >> R from each other, the gravitational flux cannot penetrate extra dimensions and the potential is given by

$$\Phi = \frac{mG_N^{3+n}}{R^n r} \tag{0.19}$$

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$

Since Fundamental Planck mass $M_{Plank}^{4+n} \sim 1/\sqrt{G_N^{4+n}}$ we get

$$\left[M_{Pl}^{4}\right]^{2} \sim R^{n} \left[M_{Pl}^{4+n}\right]^{n+2} \tag{0.20}$$

Piyali Banerjee Universite de Montreal

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.96$

Pulse length in linac is 2.2 msec while for booster circumference is 2.2 msec long

Piyali Banerjee Universite de Montreal

Search For Large Extra Dimensions in $p\bar{p}$ collider at $\sqrt{s}=1.9$