Evidence for single top quark production at DØ

Yann Coadou

Simon Fraser University

McGill University, Montréal 26 January 2007

Outline

- **1** Tevatron accelerator and DØ detector
- 2 Single top quark production Should you care?
- **3** Preparing for the measurement
 - Event selection
 - Signal and background samples
 - b tagging
- Multivariate analysis techniques
- **5** Expected sensitivity
- **6** Cross sections and significance
- **7** First direct measurement of $|V_{tb}|$
 - B Conclusion

The Tevatron at Fermilab

- Located outside Chicago, Illinois
- The world's highest-energy accelerator
- *pp* collider, centre-of-mass energy 1.96 TeV
- Run I: 1992-1996 at 1.8 TeV
- Started operating for Run II in March 2001
- Upgraded for Run II
 - 396 ns bunch spacing
 - new Main Injector and Recycler
 - \Rightarrow increased antiproton intensity

• Peak luminosity $> 2.5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

The DØ detector upgrade

- 2 T superconducting solenoid
- silicon detector
- fiber tracker
- preshower detector

- upgraded muon system
- new calorimeter electronics
- upgraded trigger and DAQ

Yann Coadou (SFU) — Evidence for single top quark production at DØ

The collaboration

• 670+ physicists, 90 institutes, 19 countries

The collaboration

• 670+ physicists, 90 institutes, 19 countries

DØ McGill

- Brigitte Vachon
- Chris Potter
- Gustavo
 Kertzscher
- Camille Belanger-Champagne
- Philipe Vachon-Rivard, Bertrand Chapleau

Top quark physics

- top quark discovered in 1995 by CDF and DØ at the Tevatron
- Heaviest of all fermions

- Couples strongly to Higgs boson
- So far only observed in pairs, only at the Tevatron

Single top quark production

• Never observed before: electroweak production

t-channel (tqb)

(*) $m_t = 175$ GeV, Phys.Rev. D70 (2004) 114012

Why do we care? — $|V_{tb}|$

- Has never been observed before!
- It should happen (if SM is right)
- The value of the cross section is a SM test and the first measurement of $|V_{tb}|$

Why do we care? — $|V_{tb}|$

- Has never been observed before!
- It should happen (if SM is right)
- The value of the cross section is a SM test and the first measurement of |V_{tb}|

Direct access to $|V_{tb}|$

$$V_{CKM} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right)$$

- Weak interaction eigenstates are not mass eigenstates
- In SM: top must decay to a W and d, s or b quark
 - $V_{td}^2 + V_{ts}^2 + V_{tb}^2 = 1$
 - constraints on V_{td} and V_{ts} : $|V_{tb}| = 0.9991^{+0.000034}_{-0.000004}$
- New physics:
 - $V_{td}^2 + V_{ts}^2 + V_{tb}^2 < 1$
 - no constraint on V_{tb}
 - e.g. 4th generation: $0.07 < |V_{tb}| < 0.9993$

Why do we care? — New physics

• s and t cross sections differently sensitive to new physics

s-channel: charged resonances

- heavy W' boson in topflavour model (separate interaction for 3rd family)
- charged Higgs boson H^{\pm} in models with extra Higgs doublets (e.g. MSSM)
- charged top pion in topcolor-assisted technicolor
- 4th generation (reduced cross section from $|V_{tb}| < 1$)
- Kaluza-Klein excited W_{KK}, etc...

t-channel: new interactions

- flavour-changing neutral currents $(t Z/\gamma/g c$ and/or $t - Z/\gamma/g - u$ couplings)
- 4th generation (potentially strong enhancement from large V_{ts})

Why do we care? — Top quark spin

- Large mass ⇒ top quark decays before it can hadronize (no top jets)
- First chance to study a bare quark!
- Top polarization reflected in angular distributions of decay products
- SM predicts high degree of left-handed tops ⇒ possible sign of new physics, or help pin down what new physics

Optimal basis

• *2*-axis along top quark direction of motion

Helicity basis

- $\sim 80(97)\%$ polarization for s(t) channel at parton level
- ~68(88)% polarization for s(t) channel after reconstruction

- 2-axis along direction of *d*-type quark: mostly antiproton beamline for *s*-channel, spectator jet for *t*-channel
- \sim 96(98)% polarization for s(t) channel at parton level
- \sim 71(89)% polarization for s(t) channel after reconstruction

Yann Coadou (SFU) — Evidence for single top quark production at $D\emptyset$

McGill University, Montréal, 26 January 2007

Why do we care? — Backgrounds, analysis techniques

Higgs searches

- Important background to WH associated Higgs production
- As soon as we discover it, somebody will try to get rid of it....

Advanced analysis techniques

- Test of techniques to extract small signal out of large background
- If tools don't work for single top, forget about the Higgs and other small signals
- If tools don't work at Tevatron, not much hope for LHC

It has been challenging for years...

 Several publications since Cross section (barns) Total inelastic Run I by DØ and CDF $2 \cdot 10$ 10^{-2} 7 DØ and 6 CDF PhDs mb 10^{-4} bĐ • $\sigma_{t\bar{t}}$ only $\sim 2 \times \sigma_{singletop}$, $1 \cdot 10^{7}$ but has striking signature 10^{-6} - µb W 6.000 10^{-8} 600 nb Ζ 10^{-10} tĒ 10¹² ≡1 pb single top 10^{14} Higgs (ZH + WH) fb 10¹⁶ 120140 160 180 200100Higgs mass (GeV)/c²

Tevatron and DØ luminosities

- Trigger required to select events at 50 Hz from 2.5 MHz collisions
- Large amount of data, reprocessed on computing grid
- Lots of Monte Carlo events produced on the grid

 Interesting physics only a tiny fraction of collisions
 ⇒ increase the number of collisions

Many thanks to the Accelerator Division

Event selection

Signature

- isolated lepton
- ∉_⊤
- jets
- at least 1 b-jet

Event selection

- Only one tight (no loose) lepton
 - electron: $p_{\mathcal{T}} > 15$ GeV, $|\eta_{det}| < 1.1$
 - muon: $p_T > 18$ GeV, $|\eta_{det}| < 2$
- $15 < \not\!\! E_T < 200 \text{ GeV}$
- 2-4 jets: $p_T > 15$ GeV, $|\eta| < 3.4$
 - Leading jet: $p_T > 25$ GeV, $|\eta_{det}| < 2.5$
 - Second leading jet: $p_T > 20 \text{ GeV}$

- Mis-reconstructed events: require ∉_T direction not aligned or anti-aligned in azimuth with lepton or jet
- One or two *b*-tagged jets

Signal and backgrounds

Single top signal ($m_t = 175 \text{ GeV}$)

• CompHEP-SingleTop + Pythia

W+jets

- Most difficult background
- Alpgen+Pythia (MLM matching between matrix elements and parton shower)
- Heavy flavour fraction and normalization from data

$t\bar{t} \ (m_t = 175 \ GeV)$

- Alpgen+Pythia (MLM)
- Normalized to $\sigma_{NNLO} = 6.8 \text{ pb}$

Multijet events

• misidentified lepton, from data

-> 3 CompHEP -> 2 Pythia

Event selection — Agreement before tagging

- Normalize W+jets and multijet to data before tagging
- Checked 90 variables, 4 jet multiplicities, electron + muon
- Good description of data

Yann Coadou (SFU) — Evidence for single top quark production at DØ

b-jet tagger

- NN trained on 7 input variables from existing taggers.
 - secondary vertices
 - impact parameter

• Much improved performance!

- fake rate reduced by 1/3 for same *b* efficiency relative to previous tagger
- smaller systematic uncertainties
- Tag Rate Functions (TRFs) in η , p_T , z-PV applied to MC
- Operating point:
 - *b*-jet efficiency \sim 50%
 - *c*-jet efficiency $\sim 10\%$
 - light jet efficiency $\sim 0.5\%$

Percentage of single top <i>tb+tqb</i> selected events and S:B ratio (white squares = no plans to analyze)					
Electron + Muon	1 jet	2 jets	3 jets	4 jets	≥ 5 jets
0 tags	10% 1 : 3,200	25% 1 : 390	12% 1 : 300	<mark>3%</mark> 1 : 270	1%
1 tag	<mark>6%</mark> 1 : 100	21% 1:20	11% 1 : 25	<mark>3%</mark> 1 : 40	1% □ 1 : 53
2 tags		3% 1 : 11	2% 1 : 15	1% □ 1 : 38	0% □ 1:43

Yann Coadou (SFU) — Evidence for single top quark production at DØ

Systematic uncertainties

- Assigned per background, jet multiplicity, lepton flavour and number of tags
- Uncertainties that affect both normalisation and shapes: jet energy scale and tag rate functions (*b*-tagging parameterisation)
- All uncertainties sampled during limit-setting phase

Relative systematic uncertainties				
$t\bar{t}$ cross section	18%	Primary vertex	3%	
Luminosity	6%	<i>e</i> reco * ID	2%	
Electron trigger	3%	<i>e</i> trackmatch & likelihood	5%	
Muon trigger	6%	μ reco * ID	7%	
Jet energy scale	wide range	μ trackmatch & isolation	2%	
Jet efficiency	2%	$\varepsilon_{\text{real}-e}$	2%	
Jet fragmentation	5–7%	$\varepsilon_{\mathrm{real}-\mu}$	2%	
Heavy flavor ratio	30%	$\varepsilon_{\rm fake-e}$	3–40%	
Tag-rate functions	2–16%	$\varepsilon_{\mathrm{fake}-\mu}$	2–15%	

Agreement after tagging

Sample	# of Events
s&t-channel Signal	62
Wjj	174
tt→l+jets	266
Wbb & Wcc	675
Mis-ID's leptons	201
Diboson,tt \rightarrow dileptons	82

Totals	2 Jets	3 Jets	4 Jets
Data	697	455	246
Total Background	685	460	253
Signal	36	20	6

Multivariate analysis techniques

• Boosted decision trees

• Matrix element

Bayesian neural networks

Decision trees

- Machine-learning technique, widely used in social sciences
- Idea: recover events that fail criteria in cut-based analysis
- Start with all events = first node
 - sort all events by each variable
 - for each variable, find splitting value with best separation between two children (mostly signal in one, mostly background in the other)
 - select variable and splitting value with best separation, produce two branches with corresponding events ((F)ailed and (P)assed cut)
- Repeat recursively on each node
- Splitting stops: terminal node = leaf

• DT output = leaf purity, close to 1 (0) for signal (bkg)

Ref: Breiman et al, "Classification and Regression Trees", Wadsworth (1984)

2

Splitting a node

Impurity i(t)

- maximum for equal mix of signal and background
- symmetric in p_{signal} and P_{background}
- Decrease of impurity for split s of node t into children t_L and t_R (goodness of split): Δi(s, t) = i(t) - p_L · i(t_L) - p_R · i(t_R)
- Aim: find split s* such that:

$$\Delta i(s^*,t) = \max_{s \in \{\text{splits}\}} \Delta i(s,t)$$

Maximizing Δ*i*(s, t) ≡ minimizing overall tree impurity

- minimal for node with either signal only or background only
- strictly concave ⇒ reward purer nodes

Examples

$$Gini = 1 - \sum_{i=s,b} p_i^2 = \frac{2sb}{(s+b)^2}$$

entropy = $-\sum_{i=s,b} p_i \log p_i$

Decision tree output

Measure and apply

- Take trained tree and run on independent pseudo-data sample, determine purities
- Apply to data
- Should see enhanced separation (signal right, background left)
- Could cut on output and measure, or use whole distribution to measure

Boosting a decision tree

Boosting

- Recent technique to improve performance of a weak classifier
- Recently used on decision trees by GLAST and MiniBooNE
- Basic principal on DT:
 - train a tree T_k
 - $T_{k+1} = \operatorname{modify}(T_k)$

AdaBoost algorithm

- Adaptive boosting
- Check which events are misclassified by *T_k*
- Derive tree weight α_k
- Increase weight of misclassified events by e^{α_k}
- Train again to build T_{k+1}
- Boosted result of event *i*: $T(i) = \sum_{n=1}^{N_{\text{tree}}} \alpha_k T_k(i)$
- Averaging ⇒ dilutes piecewise nature of DT
 Usually improves performance

Ref: Freund and Schapire, "Experiments with a new boosting algorithm", in *Machine Learning: Proceedings of the Thirteenth International Conference*, pp 148-156 (1996)

Decision tree parameters

DT choices

- 1/3 of MC for training
- AdaBoost parameter $\beta = 0.2$
- 20 boosting cycles
- Signal leaf if purity > 0.5

- Minimum leaf size = 100 events
- Same total weight to signal and background to start
- Goodness of split Gini factor

Analysis strategy

- Train 36 separate trees:
 - 3 signals (s,t,s+t)
 - 2 leptons (*e*,*µ*)
 - 3 jet multiplicities (2,3,4 jets)
 - 2 *b*-tag multiplicities (1,2 tags)
- For each signal train against the sum of backgrounds

Decision Trees - 49 input variables

Object Kinematics

 $p_{T}(jet1)$ $p_{T}(jet2)$ $p_{T}(jet3)$ $p_{T}(jet4)$ $p_{T}(best1)$ $p_{T}(notbest1)$ $p_{T}(notbest2)$ $p_{T}(tag1)$ $p_{T}(untag1)$ $p_{T}(untag2)$

Angular Correlations

 ΔR (jet1, jet2) $\cos(best1, lepton)_{besttop}$ cos(best1.notbest1) cos(tag1,alljets)alljets $\cos(tag1, lepton)_{btaggedtop}$ cos(jet1,alljets)alljets $\cos(jet1, lepton)_{btaggedtop}$ cos(jet2,alljets)alljets $\cos(jet2, lepton)_{btaggedtop}$ $\cos(\text{lepton}, Q(\text{lepton}) \times z)_{\text{besttop}}$ cos(lepton_{besttop},besttop_{CMframe}) cos(lepton_{btaggedtop},btaggedtop_{CMframe}) cos(notbest,alljets)alliets cos(notbest,lepton) cos(untag1,alljets)alljets cos(untag1,lepton)

Event Kinematics

Aplanarity(alliets,W) M(W.best1) ("best" top mass) M(W,tag1) ("b-tagged" top mass) $H_{T}(\text{alljets})$ H_T (alljets-best1) H_T (alljets-tag1) $H_{T}(alliets, W)$ H_{T} (jet1, jet2) H_T (jet1, jet2, W) M(alljets) M(alliets-best1) M(alliets-tag1) M(jet1, jet2)M(jet1, jet2, W) M_{τ} (jet1, jet2) $M_T(W)$ Missing E_{T} p_T(alljets-best1) $p_T(alljets-tag1)$ p_{T} (jet1, jet2) $Q(lepton) \times \eta(untag1)$ $\sqrt{\hat{s}}$ Sphericity(alliets, W)

- Adding variables does not degrade performance
- Tested shorter lists, lost some sensitivity
- Same list used for all channels

Matrix element method

- \bullet Pioneered by DØ top mass analysis. Now used in search
- Use the 4-vectors of all reconstructed leptons and jets
- Use matrix elements of main signal and bkgd diagrams to compute event probability density for signal and bkgd hypotheses
- Goal: calculate a discriminant:

$$D_{s}(ec{x}) = P(S|ec{x}) = rac{P_{signal}(ec{x})}{P_{signal}(ec{x}) + P_{bkg}(ec{x})}$$

• Encoded in properly normalized differential cross section for process S:

$$P_{S}(\vec{x}) = rac{1}{\sigma_{S}} d\sigma_{S}(\vec{x}), \ \ \sigma_{S} = \int d\sigma_{S}(\vec{x})$$

 Used only limited number of Feynman diagrams. Sensitivity would increase (but so does computation time) if more diagrams were included. In particular, no tt diagrams are computed (serious limitation for >2 jets)

Analysis validation — Ensemble testing

- To verify that all of this machinery is working properly we test with many sets of pseudo-data
- Wonderful tool to test analysis methods! Run DØ experiment 1000s of times!
- Generated ensembles:
 - 0-signal ensemble ($s + t \sigma = 0 \text{ pb}$)
 - SM ensemble ($s + t \sigma = 2.9 \text{ pb}$)
 - "Mystery" ensembles to test analyzers (s + t σ = ?? pb)
 - Ensembles at measured cross section (s + t σ = measured)
 - A high luminosity ensemble

2

Ensemble Testing - Details

- Use a pool of weighted signal + background events (about 850k in each of electron and muon)
- Fluctuate relative and total yields in proportion to systematic errors, reproducing correlations
- Randomly sample from a Poisson distribution about the total yield to simulate statistical fluctuations
- Generate a set of pseudo-data (a member of the ensemble)
- Pass the pseudo-data through the full analysis chain (including systematic uncertainties)

All analyses achieved linear response to varying input cross sections

Cross-check samples

- Validate methods on data in no-signal region
- "W+jets": =2jets, H_T(lepton,∉_T,alljets) < 175 GeV
- "ttbar": =4jets, H_T(lepton,∉_T,alljets) > 300 GeV
- Good agreement

3

Measuring cross sections

Probability to observe data distribution D, expecting y:

$$y = \alpha l\sigma + \sum_{s=1}^{N} b_s \equiv a\sigma + \sum_{s=1}^{N} b_s$$

$$P(D|y) \equiv P(D|\sigma, a, b) = \prod_{i=1}^{nbins} P(D_i|y_i)$$
The cross section is obtained
$$Post(\sigma|D) \equiv P(\sigma|D) \propto \int_a \int_b P(D|\sigma, a, b) Prior(\sigma) Prior(a, b)$$

- Bayesian posterior probability density
- Shape and normalization systematics treated as nuisance parameters
- Correlations between uncertainties properly accounted for
- Flat prior in signal cross section

Pos

Sensitivity determination

• Use the 0-signal ensemble

Expected p-value

Fraction of 0-signal pseudo-datasets in which we measure at least 2.9 pb (SM single top cross section)

Observed p-value

Fraction of 0-signal pseudo-datasets in which we measure at least the observed cross section.

• Also use the SM ensemble to check compatibility of observed result with SM prediction

Expected sensitivity s+t

Decision Trees p-value 1.9% (2.1 σ)

Matrix Elements p-value 3.7% (1.8 σ)

Posterior Density: e+µ w/ 2+3 Jets and >=1 Tag

Matrix element s+t observed results

ME discriminant output, with and without signal content (all channels combined)

Decision trees on data

- We have 36 different Decision Trees
- Example: electron, 2 jet, 1 tag

Boosted decision tree observed results

 $\sigma_{s+t} = 4.9 \pm 1.4 \text{ pb}$ p-value = 0.035% (3.4 σ) SM compatibility: 11% (1.3 σ)

Yann Coadou (SFU) — Evidence for single top quark production at DØ

Decision trees — **Summary**

Yann Coadou (SFU) — Evidence for single top quark production at DØ M

Boosted decision tree event characteristics

s+t summary — Correlations

Measuring $|V_{tb}|$

- Now that we have a cross section measurement, we can make the first direct measurement of $|V_{tb}|$
- Use the same infrastructure as for cross section measurement but make a posterior in $|V_{tb}|^2$

Additional theoretical errors (hep-ph/0408049)

	5	t
top mass	13%	8.5%
scale	5.4%	4.0%
PDF	4.3%	10.0%
α_s	1.4%	0.01%

• Most general *Wtb* coupling
$$(P_{L,R} = (1 \mp \gamma_5)/2)$$
:

$$\Gamma^{\mu}_{tbW} = -\frac{g}{\sqrt{2}} V_{tb} \bar{u}(p_b) \left[\gamma^{\mu} (f_1^L P_L + f_1^R P_R) - \frac{i\sigma^{\mu\nu}}{M_W} (f_2^L P_L + f_2^R P_R) \right] u(p_t)$$

• SM:
$$f_1^L = 1$$
, $f_1^R = f_2^L = f_2^R = 0$

• Effectively measuring strength of V-A coupling $|V_{tb}f_1^L|$, can be > 1

First direct measurement of $|V_{tb}|$

• Assuming $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$ and pure V-A and CP-conserving Wtb interaction

 No assumption about number of quark families or CKM matrix unitarity

Conclusion

First evidence for single top quark production (DØ decision trees)

$$\sigma(p\bar{p} \rightarrow tb + X, tqb + X) = 4.9 \pm 1.4 \text{ pb}$$

3.4 σ significance

First direct measurement of $|V_{tb}|$ (DØ decision trees)

$$\begin{split} |V_{tb}f_1^L| &= 1.3 \pm 0.2\\ \text{assuming } f_1^L = 1: \quad 0.68 < |V_{tb}| \le 1 \ @ \ 95\% \ \text{CL}\\ (\text{Always assuming } V_{td}^2 + V_{ts}^2 \ll V_{tb}^2 \text{ and pure } V\text{-}A \text{ and CP-conserving } Wtb \text{ interaction}) \end{split}$$

hep-ex/0612052, submitted to PRL

- Working on understanding correlations and on combinations
- A lot more data already at hand

Backup slides

4

Motivation - New Physics

Top quark spin

Yann Coadou (SFU) — Evidence for single top quark production at DØ

Data reprocessing - Monte Carlo production

Yann Coadou (SFU) — Evidence for single top quark production at DØ

4

W+jets normalization

• Find fractions of real and fake isolated lepton in data before *b*-tagging. Split samples in loose and tight isolation:

$$N^{loose} = N^{loose}_{fake} + N^{loose}_{real}$$

$$N^{tight} = \epsilon_{fake} N^{loose}_{fake} + \epsilon_{real} N^{loose}_{real}$$

Solve for N^{loose}_{fake} and N^{loose}_{real}

• Normalize MC W+jets samples to real lepton yield found in data, accounting for presence of $t\bar{t}$:

$$\epsilon_{\mathit{real}} \mathit{N}_{\mathit{real}}^{\mathit{loose}} = \mathit{SF} imes (\mathit{Wjj} + \mathit{Wcc} + \mathit{Wbb}) + t \overline{t}, \quad \mathit{SF} \sim 1.4$$

- (Wbb + Wcc)/Wjj found in zero-tag sample: 1.5 ± 0.5
- Then apply *b*-tagging
 - reduces W+jets background
 - changes flavour composition and kinematic distributions

W+jets heavy flavour fraction

$\alpha (Wb\bar{b} + Wc\bar{c}) + Wjj + t\bar{t} + QCD = Data$

Scale Factor α to Match Heavy Flavor Fraction to Data				
	1 jet	2 jets	3 jets	4 jets
Electron Channel				
0 tags	1.53 ± 0.10	1.48 ± 0.10	1.50 ± 0.20	1.72 ± 0.40
1 tag	1.29 ± 0.10	1.58 ± 0.10	1.40 ± 0.20	0.69 ± 0.60
2 tags		1.71 ± 0.40	2.92 ± 1.20	-2.91 ± 3.50
Muon Channel				
0 tags	1.54 ± 0.10	1.50 ± 0.10	1.52 ± 0.10	1.38 ± 0.20
1 tag	1.11 ± 0.10	1.52 ± 0.10	1.32 ± 0.20	1.86 ± 0.50
2 tags	—	1.40 ± 0.40	2.46 ± 0.90	3.78 ± 2.80

Event Selection - Yields

	Event Yields in 0.9 fb ⁻¹ Data Electron+muon, 1tag+2tags combined			
Source	2 jets 3 jets		4 jets	
tb	16 ± 3	8 ± 2	2 ± 1	
tqb	20 ± 4	12 ± 3	4 ± 1	
tī → II	39 ± 9	32 ± 7	11 ± 3	
$t\bar{t} \rightarrow l$ +jets	20 ± 5	103 ± 25	143 ± 33	
W+bb	261 ± 55	120 ± 24	35 ± 7	
W+cc̄	151 ± 31	85 ± 17	23 ± 5	
W+jj	119 ± 25	43 ± 9	12 ± 2	
Multijets	95 ± 19	77 ± 15	29 ± 6	
Total background	686 ± 41	460 ± 39	253 ±38	
Data	697	455	246	

Expected single top signal is smaller than background uncertainty!
 ⇒ No counting experiment, requires advanced analysis techniques

Matrix element discriminants

DØ discriminants

$$D_s(\vec{x}) = P(S|\vec{x}) = rac{P_{signal}(\vec{x})}{P_{signal}(\vec{x}) + P_{bkg}(\vec{x})}$$

$$P_{bkg}^{2jets}(\vec{x}) = c_{Wbb}P_{Wbb}(\vec{x}) + c_{Wcg}P_{Wcg}(\vec{x}) + c_{Wgg}P_{Wgg}(\vec{x})$$
$$P_{bkg}^{3jets}(\vec{x}) = P_{Wbbg}(\vec{x})$$

- *c*_{Wbb}, *c*_{Wcg} and *c*_{Wgg} are in principle the relative fractions of each background
- optimized for each channel to increase sensitivity

CDF discriminant

$$\textit{EPD} = \frac{b \cdot \textit{P}_{\textit{signal}}}{b \cdot \textit{P}_{\textit{signal}} + b \cdot \textit{P}_{\textit{Wbb}} + (1 - b)\textit{P}_{\textit{Wcc}} + (1 - b)\textit{P}_{\textit{Wcj}}}$$

• b is the neural network b-tagger output converted to probability

5

Matrix element method - D0 diagrams

A different sort of neural network

- Instead of choosing one set of weights, find posterior probability density over all possible weights
- Averaging over many networks weighted by the probability of each network given the training data
- Less prone to overtraining
- For details see: http://www.cs.toronto.edu/~radford/fbm.software.html
- Use 24 variables (subset of DT variables)

5

Sensitivity determination at CDF

- Using the CLs method developed at LEP
- Compare two models at a time
- Test statistic:

$$Q = rac{L(data|s+b)}{L(data|b)}$$

- Systematic uncertainties included in pseudo-experiments
- Expected sensitivity: median p-value

Likelihoodmedian p-value = 2.3% (2.0σ) Matrix elementmedian p-value = 0.6% (2.5σ) Neural networkmedian p-value = 0.5% (2.6σ)

Yann Coadou (SFU) — Evidence for single top quark production at $D\emptyset$

5

CDF observed results — Compatibility

- CDF spent great deal of time (6 months) and effort understanding if the different results are something more than a statistical fluctuation.
- Eliminated possibility of obvious and even subtle bugs
- 6-discriminant compatibility coming soon
- Now investigating if features of the MC modeling affect one analysis more than the other.
- □ Wcc ttbar (dil) mistags Wbb Z->uu nonW (a) N WZ □ Z->ee non-W (c) 10 n ww non-W (b) Ζ->ττ s-chan t-chan CDF data 10 2 з

ttbar (non-dil)

Wc

Analysing more data should shed some light

Bin 1: NN<0.8 && EPD<0.9 Bin 2: NN>0.8 && EPD<0.9 Bin 3: NN<0.8 && EPD>0.9 Bin 4: NN>0.8 && EPD>0.9

Matrix element outputs

5

Decision tree combined outputs

5

Boosted decision tree event characteristics

Single top prospects — Tevatron and LHC

Tevatron

- By 2008 we should have observed single top production and measured its cross section to 15-20%
- $|V_{tb}|$ is then known to ${\sim}10\%$

LHC

- Much larger production rates: $\sigma_s^{t/\bar{t}} = 6.6/4.1 \text{ pb } (\pm 10\%)$ $\sigma_t^{t/\bar{t}} = 156/91 \text{ pb } (\pm 5\%)$ $\sigma_{tW}^{t/\bar{t}} = 34/34 \text{ pb } (\pm 10\%)$ • Try to observe all three channels (s-channel challenging)
- $|V_{tb}|$ measured to percent level
- Large samples \Rightarrow study properties

