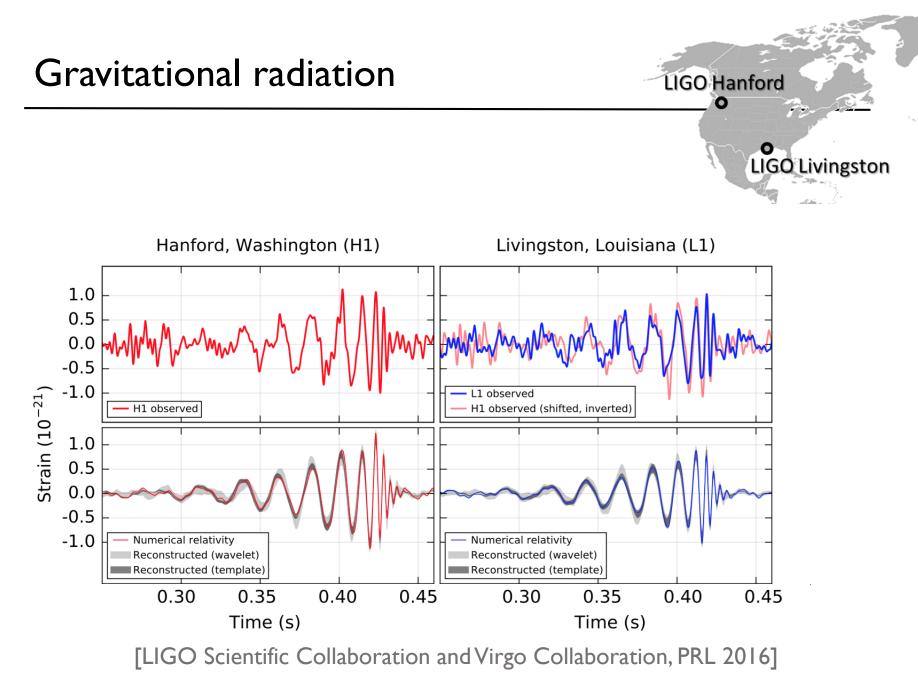
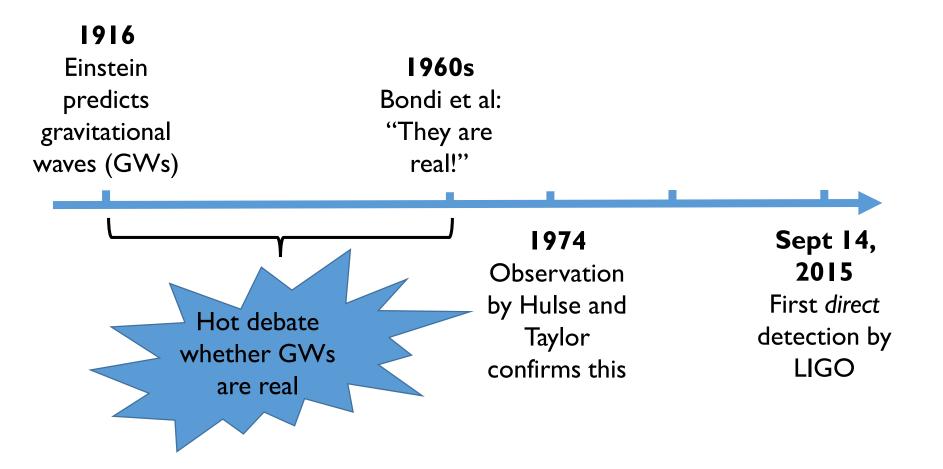
The quadrupole formula: a 100 years later

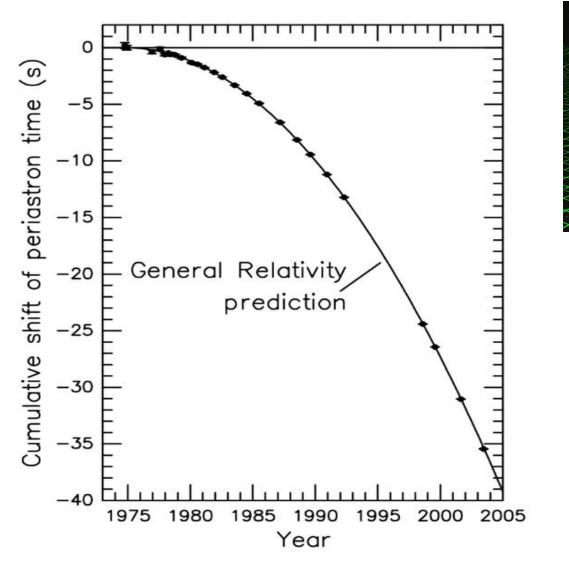
Béatrice Bonga

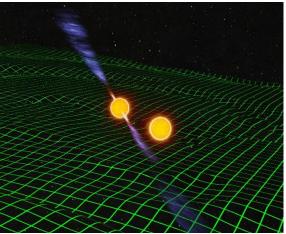
Work in collaboration with Abhay Ashtekar, Jeff Hazboun and Aruna Kesevan



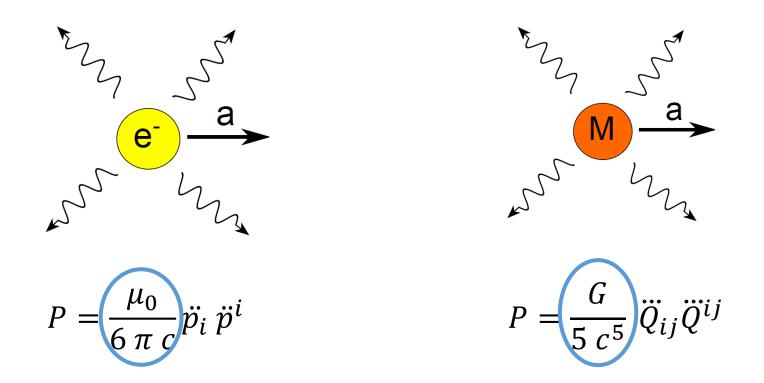
Some history





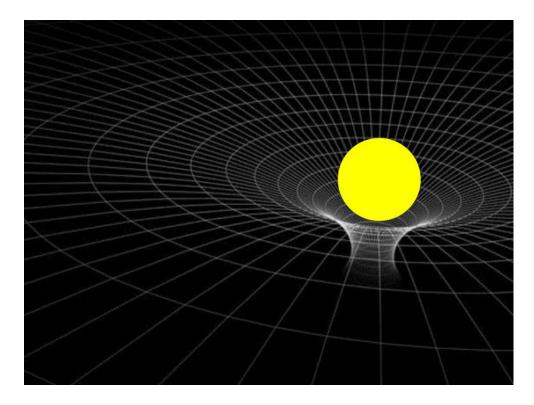


Quadrupole radiation



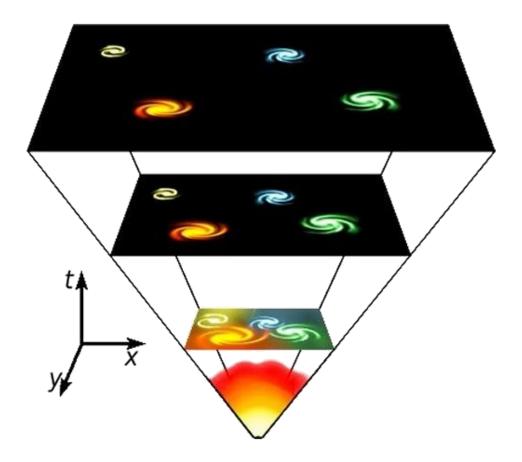
Charge/mass conservation \rightarrow no monopole radiation Momentum conservation \rightarrow no dipole radiation

Critical assumption



Move far away from sources: 'spacetime becomes flat'

Expanding spacetimes are not asymptotically flat!



Conference Warsaw 1963

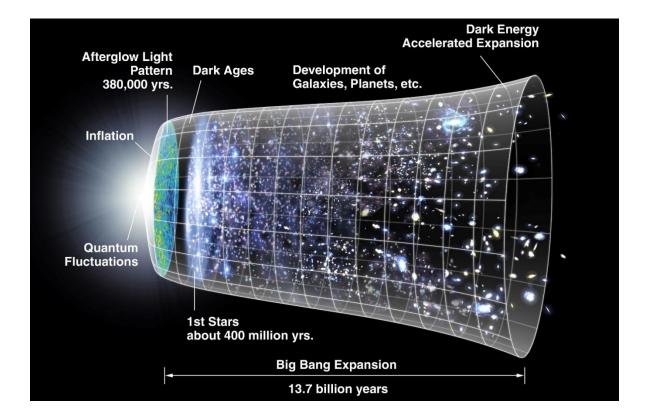
P. G. BERGMANN:

The only answer I can give is that the investigations date back less than two years, I believe, and that people have simply started with the mathematically simplest situation, or what they hoped was the simplest situation.

H. BONDI:

I regret it as much as you do, that we haven't yet got to the point of doing the Friedmann universe.

Modelling the expansion

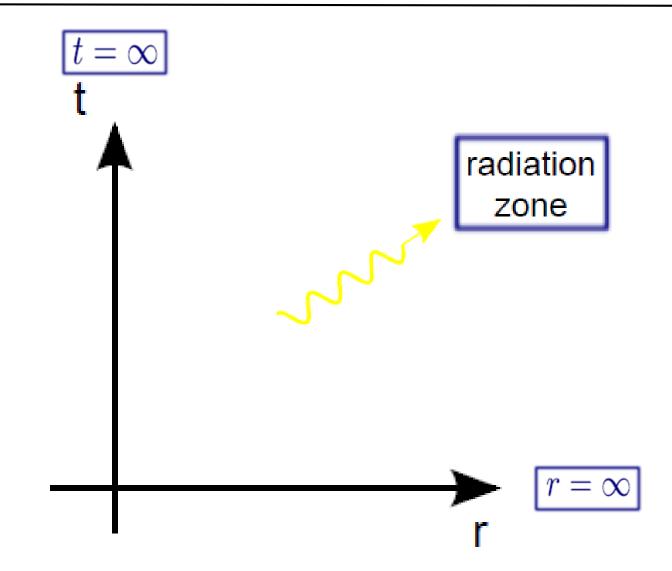


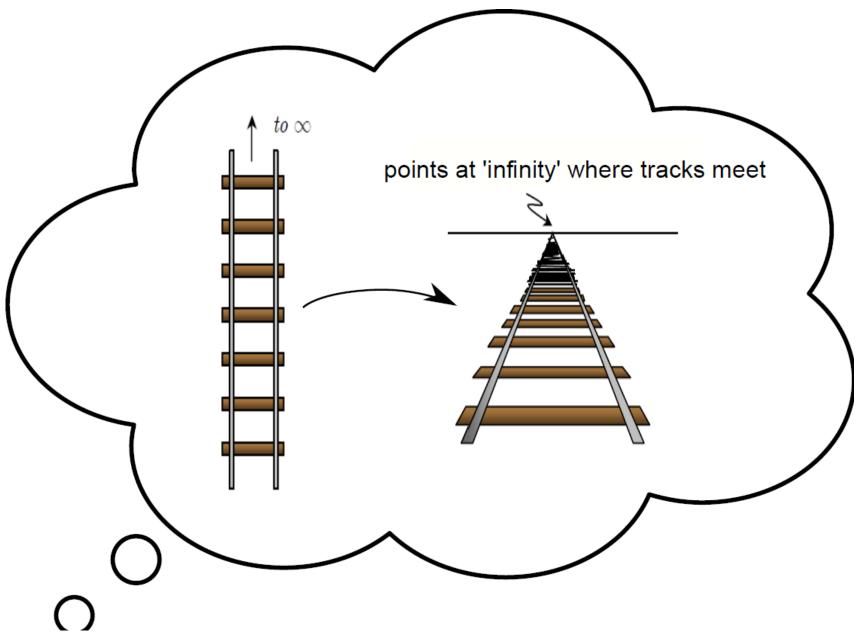
Describe the Universe by a de Sitter spacetime (= vacuum with a cosmological constant Λ)

But isn't Λ small?

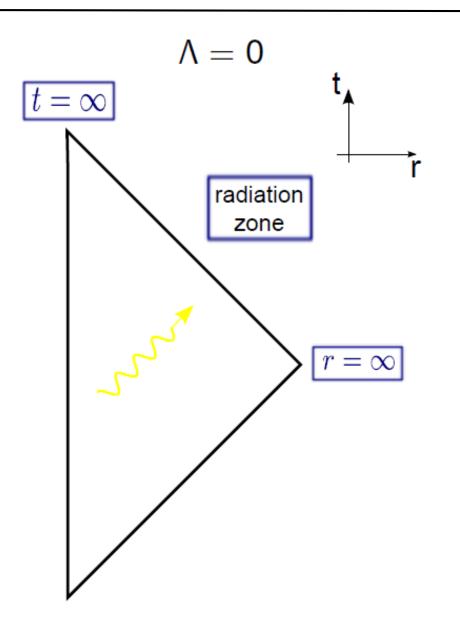
Even though $\Lambda \sim 10^{-52} \text{ m}^{-2}$, it can cast a long shadow!

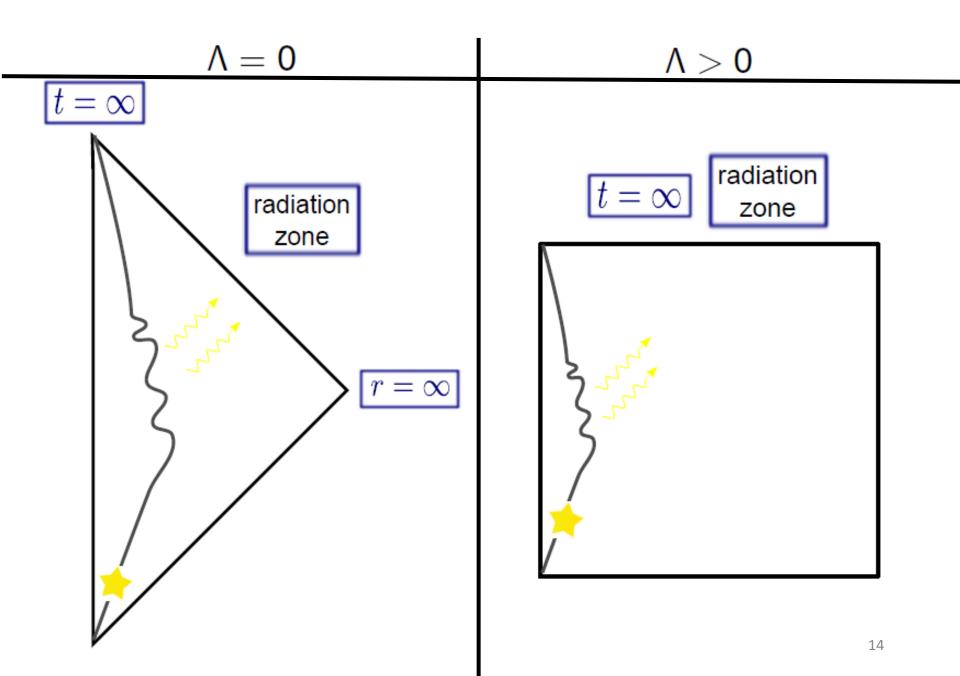
Intermezzo: conformal diagrams



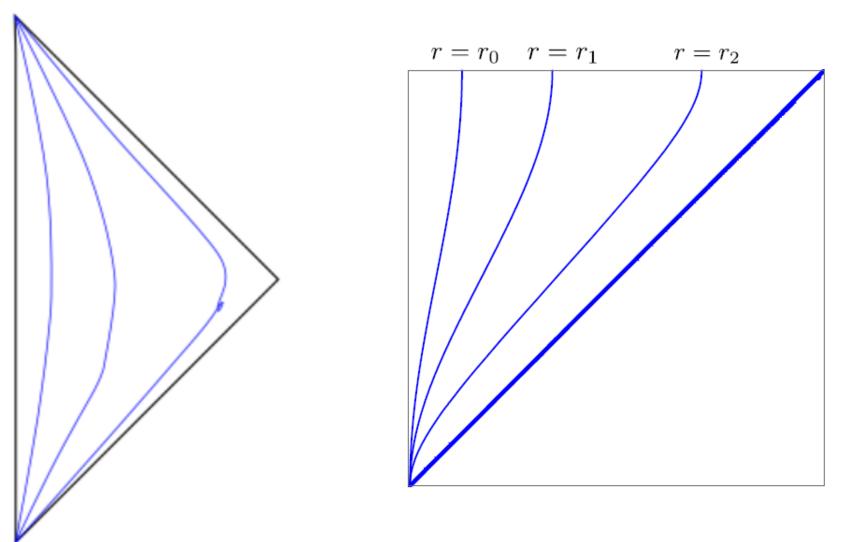


Conformal diagrams for flat spacetimes





1/r-expansion not applicable when $\Lambda \neq 0$



3 ingredients for the quadrupole formula

Gravitational perturbation

Quadrupole moment

Conservation stress-energy tensor

First ingredient: gravitational perturbations

$$ds^{2} = -dt^{2} + e^{2\sqrt{\frac{\Lambda}{3}}t} \left(dx^{2} + dy^{2} + dz^{2} \right)$$

Gravitational perturbation satisfies

$$\left(-\frac{\partial^2}{\partial t^2} + e^{-2\sqrt{\frac{\Lambda}{3}}t}\vec{\nabla}^2 - 3\sqrt{\frac{\Lambda}{3}}\frac{\partial}{\partial t}\right)\bar{h}_{ij} = 16\pi G \,e^{-2\sqrt{\frac{\Lambda}{3}}t} \,T_{ij}$$

so that in the late time regime

$$\bar{h}_{ij} = \frac{4G}{r} \int d^3x' T_{ij}(t_r, x') \underbrace{-G\sqrt{\frac{16\Lambda}{3}} \int_{-\infty}^{t_r} dt' e^{\sqrt{\frac{\Lambda}{3}}t'} \frac{\partial}{\partial t'} \int d^3x' T_{ij}(t', x')}_{\text{tail term}}$$

Second ingredient: quadrupole moment

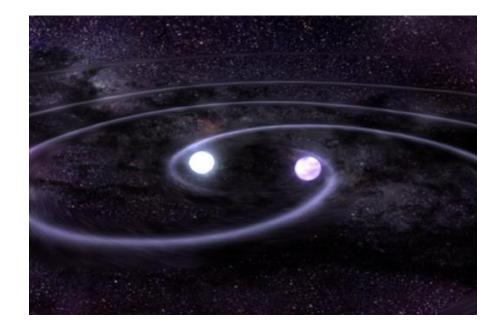
$$Q_{ij} := \int_{a^3 \mathrm{d}x \mathrm{d}y \mathrm{d}z} \int_{T_{\mu\nu} \partial_t^{\mu} \partial_t^{\nu}} \underbrace{(a \, x_i) \, (a \, x_j)}_{\text{physical distance}}$$

Conservation of the stress-energy tensor $\[abel{eq:conservation}\] \bar{\nabla}^{\mu}T_{\mu\nu} = 0$

$$\partial_t \rho - e^{-\sqrt{\frac{\Lambda}{3}}t} \vec{\nabla}^i T_{0i} + \sqrt{3\Lambda} \left(\rho + P\right) = 0$$
$$\partial_t T_{0i} - \vec{\nabla}^j T_{ij} + \sqrt{3\Lambda} T_{0i} = 0$$

$$\int d^3x \, T_{ij} = \frac{e^{-\sqrt{\frac{\Lambda}{3}t}}}{2} \left(\ddot{Q}_{ij}^{(\rho)} + 2\sqrt{\frac{\Lambda}{3}} \dot{Q}_{ij}^{(\rho)} + \sqrt{\frac{\Lambda}{3}} \dot{Q}_{ij}^{(P)} + \frac{2\Lambda}{3} Q_{ij}^{(P)} \right)$$

Einstein's celebrated quadrupole formula



$$P_{\rm Mink} = \frac{G}{8\pi} \int_{\mathcal{I}} d^2 S \, \ddot{Q}_{ab}^{\rm tt}(t_{\rm ret}) \ddot{Q}_{ab}(t_{\rm ret})$$

[Einstein, 1916]

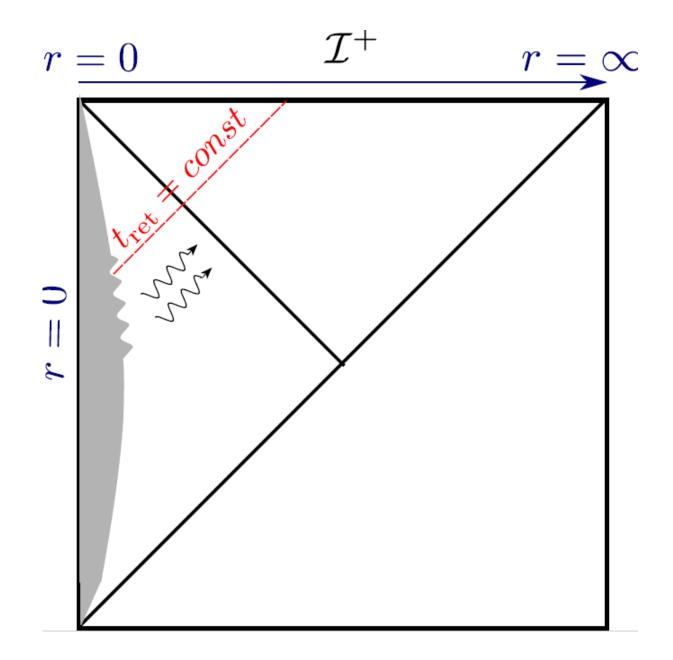
... now with \wedge !

$$P_{\text{deSitter}} = \frac{G}{8\pi} \int_{\mathcal{I}} d^2 S \, \mathcal{R}_{ab}^{\text{TT}}(t_{\text{ret}}) \, \mathcal{R}^{ab}(t_{\text{ret}})$$
$$\mathcal{R}_{ab} = \ddot{Q}_{ab}^{(\rho)} + \sqrt{3\Lambda} \ddot{Q}_{ab}^{(\rho)} + \frac{2\Lambda}{3} \dot{Q}_{ab}^{(\rho)} + \sqrt{\frac{\Lambda}{3}} \ddot{Q}_{ab}^{(p)} + \Lambda \dot{Q}_{ab}^{(p)} + 2\left(\frac{\Lambda}{3}\right)^{3/2} Q_{ab}^{(p)}$$

 \succ Limit $\Lambda \rightarrow 0$ recovers Minkowski result

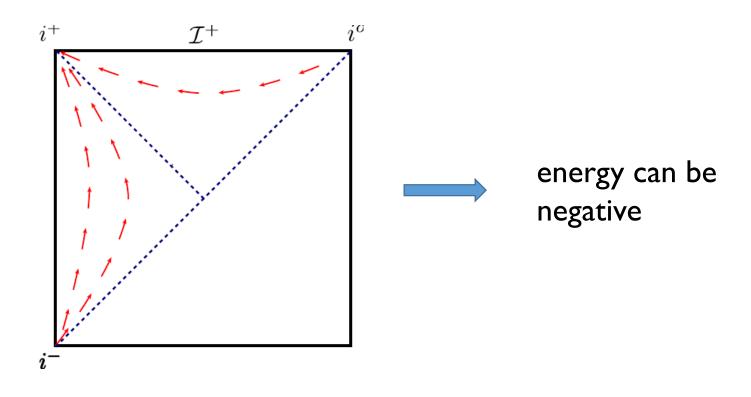
Pressure terms appear

> Only retarded fields contribute despite tail term

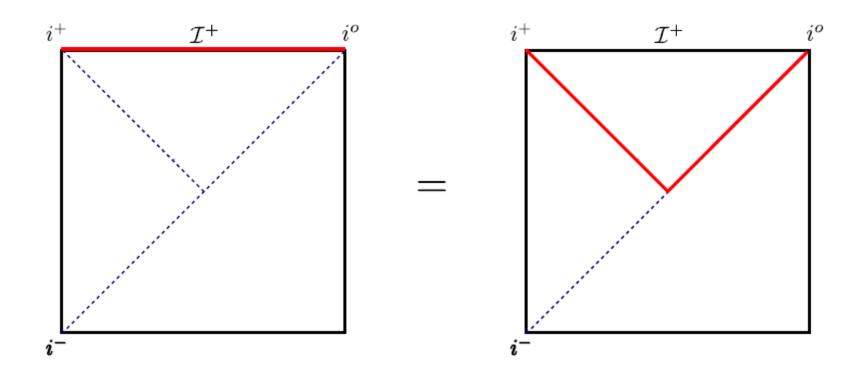


Is this power radiated positive?

All Killing vector fields are spacelike on \mathcal{I}^+



For physically realistic sources it is!



Assume system is in a circular orbit for all time:

$$rac{dR_*}{dt}=0$$
 and $rac{d\Omega_*}{dt}=0$

> Adiabatic approximation valid on cosmological time scales

> Fine-tuned trajectory

> System remains bound despite cosmological expansion

$$P = \frac{32G}{5} \mu^2 R_*^4 \Omega^6 \left(1 + \frac{5}{12} \frac{\Lambda}{\Omega^2} + \frac{1}{36} \frac{\Lambda^2}{\Omega^4} \right)$$

- \succ Corrections ~ Λt_c^2
- \succ No truncation in Λ

What systems would lead to 1% corrections to the power?

Assume that

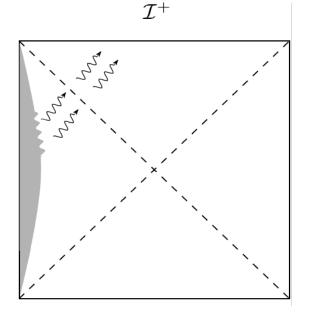
> Corrections ~
$$\sqrt{\Lambda} t_c$$
 generalizes to ~ $\sqrt{G \rho(z)} t_c$

For z=100, characteristic time scale needs to be $t_c \sim 10^7$ years > 2 M_{\odot} black hole binary: $d \sim 0.4 pc$

 $> 10^6 M_{\odot}$ black hole binary: $d \sim 30 pc$

Even a tiny cosmological constant can cast a long shadow.

- Radiation zone very different
- \succ 1/r expansions not useful
- Tail terms
- Potentially observable



Thank you for being here today!