WTRIUMF Status of T2K

Long-baseline neutrino experiment

February, 2010

T2K collaboration

~400 collaborators, 65 institutes, 12 countries

Canada

TRIUMF

- U. Alberta U. British Columbia
- U. Regina
- U. Toronto
- U. Victoria
- York U.

France

CEA Saclav IPN Lyon LLR E. Poly LPNHE Paris

Germany

U. Aachen

Italy

INFN, U. Roma INFN, U. Napoli INFN, U. Padova INFN, U. Bari Japan Hiroshima U ICRR ICRR Kashiwa ICRR RCCN KEK Kobe U. Kyoto U.

Miyagi U. Osaka City U.

U. Tokyo

Poland A.Soltan, Warsaw H.Niewodniczanski, Cracow T.U. Warsaw U. Silesia, Katowice U. Warsaw U. Wroklaw Russia INR South Korea N.U. Chonnam U. Dongshin

N.U. Gyeongsang N.U. Kyungpook U. Sejong

N.U. Seoul U. Sungkyunkwan Spain IFIC, Valencia U.A. Barcelona Switzerland U Bern

U. Geneva

ETH Zurich

UK

Imperial C. London Queen Mary U.L. Lancaster U. Liverpool U. Oxford U. Sheffield U.

Warwick U. STFC/RAL STFC/Daresbury USA Boston U. BNL Colorado S.U. Duke U. Louisiana S.U. Stony Brook U. U.C.Irvine U. Colorado U. Pittsburgh

- U. Rochester
- U. Washington

February, 2010

T2K experiment

Super-Kamiokande

- Long baseline neutrino oscillation experiment from Tokai to Kamioka.
- $v_{\mu \rightarrow} v_e$ appearance to measure θ_{13} , which leads to CP violation studies.

Neutrino oscillation

- Weak and mass eigenstates of neutrinos differs
- Quantum mechanical interference causes neutrino oscillation

3 generation neutrino oscillation

Why neutrino is interesting?

Neutrino mass indicates new energy scale

- See-saw mechanism
 - Mixing of Dirac & Majorana mass explains small m_v $\nu_L \nu_R$ $\alpha_{1}^{-1}(\mu)$ 60 MSSM $M_{susy} = M_{s}$ - Majorana mass is at GUT scale 40 $\alpha_{2}^{-1}(\mu)$ $M \sim \frac{m_D^2}{m_{light}} \sim \frac{(250 GeV)^2}{\sqrt{2.5 \times 10^{-3} eV^2}} \sim 10^{15} GeV$ 20 $\alpha_a^{-1}(\mu$ – CP explains Baryon Asymmetry 0 5 Leptogenesis 0 10 15 \log_{10} (μ/GeV)

20

Large lepton mixing (PMNS)

Giving us information at GUT scale?

parameter	best fit	2σ	3σ
$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	$7.65_{-0.20}^{+0.23}$	7.25 - 8.11	7.05 - 8.34
$ \Delta m^2_{31} \left[10^{-3} {\rm eV^2} \right]$	$2.40\substack{+0.12\\-0.11}$	2.18 - 2.64	2.07 - 2.75
$\sin^2\theta_{12}$	$0.304\substack{+0.022\\-0.016}$	0.27 - 0.35	0.25 - 0.37
$\sin^2 \theta_{23}$	$0.50\substack{+0.07 \\ -0.06}$	0.39-0.63	0.36 - 0.67
$\sin^2\theta_{13}$	$0.01\substack{+0.016\\-0.011}$	≤ 0.040	≤ 0.056

Tri-Bimaximal?

$$\sin^2 \theta_{12} = \frac{1}{3} \\ \sin^2 \theta_{23} = \frac{1}{2} \\ \sin^2 \theta_{13} = 0$$

$$\begin{aligned} |\nu_3\rangle &= \frac{1}{\sqrt{2}}(-|\nu_{\mu}\rangle + |\nu_{\tau}\rangle) \\ |\nu_2\rangle &= \frac{1}{\sqrt{3}}(|\nu_e\rangle + |\nu_{\mu}\rangle + |\nu_{\tau}\rangle) \\ |\nu_1\rangle &= \frac{1}{\sqrt{6}}(2|\nu_e\rangle - |\nu_{\mu}\rangle - |\nu_{\tau}\rangle) \end{aligned}$$

Quark mixing (CKM matrix)

$$\frac{d' \ s' \ b'}{b} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \cos \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\cos \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Almost diagonal

 $\begin{aligned} \sin \theta_{23} &= A\lambda^2 & \sin \theta_{13} e^{-i\delta} = A\lambda^3 (\rho - i\eta) & \sin \theta_{12} = \sin \theta_C = \lambda \sim 0.2 \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - \frac{A^2 \Lambda^2}{2} & A\Lambda^2 \\ 0 & -A\Lambda^2 & 1 - \frac{A^2 \Lambda^2}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & A\Lambda^3 (\rho - i\eta) \\ 0 & 1 & 0 \\ A\Lambda^3 (\rho - i\eta) & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 - \frac{\Lambda^2}{2} & \lambda & 0 \\ -\lambda & 1 - \frac{\Lambda^2}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$

Tri-bimaximal?

$$\sin^2 \theta_{23} = \frac{1}{2} \qquad \sin^2 \theta_{13} = 0 \qquad \sin^2 \theta_{12} = \frac{1}{3} \\
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
 \end{pmatrix} \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix} \begin{pmatrix}
 \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
 -\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} & 0 \\
 0 & 0 & 1
 \end{pmatrix}$$

Breaking at O(λ , λ^2)~0.1 level like CKM?

 $\sin \vartheta_{23} : v_{\mu}$ disappearance (Long baseline v) $\sin \vartheta_{13} : v_{\mu} \rightarrow v_{e}$ appearance (LBL), v_{e} disappearance (reactor v) $\sin \vartheta_{12} : v_{e}$ disappearance (solar v, reactor v)

Basic idea of T2K experiment

- Narrow band beam tuned at the oscillation maximum
 - Off-axis v beam (2.5 deg.)
 - Maximize v oscillation
 - Suppress backgrounds from high energy tail, beam v_e
- Sub-GeV v beam (0.5-1GeV)
 - $\begin{array}{l} \ CCQE(v_{\mu}n{\rightarrow}\mu p) \ dominates \\ Ev \ reconst. \ by \ \mu \ momentum \end{array}$

 $E_{\nu} = \frac{2E_l m_N - m_l^2}{2(m_N - E_l + P_l \cos\theta_l)}$

 Works well for water Cerenkov (Super-K)

2010 February

v_u disappearance

- $P(v_{\mu} \rightarrow v_{\mu}) = 1 \sin^2 2\theta_{23} \sin^2 (1.27 \Delta m^2 L/E_v)$ $sin^{2}2\theta_{23}=1$ or <1?
- Oscillation pattern in SuperK rate $sin^2 2\theta_{23}$: Depth of E_v dip Δm^2_{23} : Position of E_v dip
- 5 year sensitivity $\partial(\sin^2 2\theta_{23}) \approx 0.01$ $\partial(\Delta m_{23}^2) \approx 0.0001 \text{eV}^2$ 5 year sensitivity

2.7

2.6

2.5

ve appearance

- $P(v_{\mu \rightarrow} v_e) \sim sin^2 \theta_{23} sin^2 2 \theta_{13} sin^2 (1.27 \Delta m^2_{13} L/E_v) + CP viol.+...$ $\theta_{13} \neq 0$?
- 90% CL sensitivity $\frac{1}{3} \approx 0.006 \text{ for } 750 \text{kWx5yr}$

Expected number of events at SK (0.75kW beam x 5yr)				
$sin^22\theta_{13}$	Ba	Rignal		
	ν_{μ} induced	$\text{Beam}\nu_e$	Total	Signai
0.1	10	10 12 22		103
0.01	10	15	23	10

• CP viol. contribution not small CP study in the 2nd phase Complementary to reactor θ_{13}

J-PARC

Neutrino beamline

Neutrino beamline

Target Remote Maintenance

constructed by TRIUMF/RAL

2010 February

Optical Transition Radiation (OTR) monitor

- Beam profile monitor in front of the 1MW target
- OTR light from Ti foil is transferred to rad-hard camera through shielding

OTR

2010 February

Beamline commissioning: April 09

After ~ 10 shots for tuning, proton beam hit around target center

Proton beam profile monitor along nu beamline

OTR detector just in front of target (fluorescence plate) Properties - Spill 1871 exce Connected Image 104-34 17 31 16 UTC Swill \$6010

2010 February

Status of T2K

Akira Konaka(TRIUMF)

Beam monitor analysis

- Detailed study of beam monitor alignment, rotation, coordinate system, etc.
 - Lead by Toronto/York postdoc and graduate students

OTR light being used from Dec.09

As the beam intensity goes up, we use OTR foils instead of fluorescence ceramic plate

Off-axis near detector (ND280)

 Canada contributes TPC (time projection chamber) and FGD (fine grained detector) built at TRIUMF

Flux and cross section study

- Detect both leptons and hadrons
 - Clean particle identification
 - Momentum, dE/dx, downstream Ecal
 - Understand hadronic/nuclear uncertainties
 - Vertex activitie detection
 - "Kinematic" & "Calorimetric" ways

Time Projection Chamber (TPC)

- Requirements
 - momentum resolution<10%</p>
 - dE/dx resolution <10%</p>
 - Energy scale resol. <2%
- Design
 - Double box structure
 - Cupper clad G10/rohacel
 - remove cupper between strips using router
 - Micromegas readout
 - Custom ASIC with SCA (AFTER)
 - Ar-CF₄-iC₄H₁₀ (inner) and CO₂ (outer)
 - ΔP<0.1mb between inner and outer volume

Centeal cathode with laser target

2010 February

Fine Grained Detector (FGD)

- Target mass for v interaction

 2mx2mx30cm (<1 int. length)
 one with water layers
- Detect secondaries around vertex
 - Fine granurality (1cmx1cm)
 - Extruded scinti. with WLS fiber
 - MPPC (SiPM) readout
 Photon counting
 - 10µsec-50MHz wave form digitizer for Michel electron (AFTER ASIC)

FGD construction

Extruded scintillator

2010 February

Status of T2K

Akira Konaka(TRIUMF)

FGD/TPC beam test at TRIUMF

M11 Beam test results

FGD Energy vs. range for muons

TPC dE/dx

FGD/TPC assembly at J-PARC

Students and postdocs with experts for assembly in summer '09

FGD/TPC installed smoothly!

2010 February

Why yes, that *is* Hiro Tanaka hitting the FGD with a hammer.

Neturino event on ND280 (on YouTube)

Cosmic event with magnet on (Yesterday's event!)

Event number : 43 | Partition : INVALID | Run number : 2536 | Spill : INVALID | SubRun number :0 | Time : Wied 2010-02-03 15:51:38 JST | Trigger : 128

Super-Kamiokande

- SK fully recovered (2006) SK-III
 PMT's with acrylic/FRP cover
- Electronics/DAQ upgrade SK-IV
 - High speed, deadtime-less
 - Software update and detailed calibration is ready.
 - Observation of T2K neutrino event is imminent.
- Study of optical response of PMT
 - Lead by Hiro Tanaka

T2K run plan

2010					2011		
	Jan	Feb	Mar	Apr	Мау	Jun	Jan~ Jun
MR Beam Power (kW)	20	40	40	60	100	100	150
Accumulated Power (kW*107s)	0.9	1.9	5.4	15.3	29.2	44.9	174
Acc. SK v _µ FCFV	0.7	1.6	4.5	12.7	24.2	37.1	156
Acc. SK v _e sig. (bkg.) [sin ² 2θ ₁₃ =0.1]	0.02 (0.01)	0.06 (0.01)	0.17 (0.04)	0.5 (0.1)	0.9 (0.2)	1.4 (0.3)	6.0 (1.3)

Presentation at J-PARC PAC 2010

 $Sin^2 2\theta_{13}$ sensitivity (90% CL)

- Complementary to reactor projects
 - appearance
 - sensitive to CP
- Daya Bay
 - near detector ready 2010
 - far detector ready 2011

Future of T2K

- New far/intermediate detectors for CP
 Water Cerenkov or Liquid Argon
 - Hyper-K (300km)
 - Korea (1100km)
 - Okinoshima (600km)
 - 2km detector
- Accelerator upgrades
 - 400MeV linac
 - Faster cycling, more #p
- Future depends on the size of θ_{13}

Summary

- T2K accelerator/beamline commissioned in 2009
 - Accelerator intensity is gradually going up 20-50kW
 - Beamline compnents worked as designed
- Near detector installation completed in Dec.09.
 - First neutrino events observed.
 - Magnet commissioning is being completed.
 - $-100kW(13\% \text{ of design}) \times 10^7 \text{sec}$ is expected in 2010
 - New technologies (e.g. MPPC, Micromegas)
- Far detector SK-IV is up and running
- Physics results expected in a year.
 - Canadian group is taking central role in detector construction, operation and analysis.

Backup slides

JFY 2010 KEK budget (to be approved by Congress)

		JFY2009	JFY2010	
•	Total Budget	300M\$	295M\$	↓ 5M\$
•	J-PARC	65M\$	68M\$	↑ 3M\$
•	B Factory	50M\$	45M\$	↓ 5M\$
•	Intern. Collab.	10M\$	10M\$	↓ 0.5M\$
•	Others			
•	'KEKB facility	0	6M\$	↑ 6M\$
	Improvement'			

The cut was not substantial.

Thank you for your supports last year. K.Nishikawa @ PAC

Leadership role towards physics

- Near detector (ND280)
 - run coordinator (Dean Karlen)
 - physics coordinator (Hiro Tanaka)
 - v_µ convener (Scott Oser)
 - Calibration convener (Fabrice Retiere)
 - Software co-convener (Thomas Lindner)
- SK
 - Co-convener (Akira Konaka)
 - Graduate student (Patrick de Perio) at Kamioka
- Beam (mainly KEK/Kyoto group)
 - Canadian members lead the beam monitor analysis

Two ways to reconstruct $\textbf{E} \nu$

Kinematic way

- Method used at low energy e.g. SuperK, MiniBooNE
- Only µ information is needed and little hadronic uncertainty
 ⇒ **TPC** for PID and P_µ
- Nuclear uncertainties, such as Fermi motion, Pauli blocking

Calorimetric way

$$v_{\mu} + \mathbf{A} \rightarrow \mu + \mathbf{p} + (\mathbf{A-1})$$

$$E_{\mathbf{v}} = E_{\mathbf{\mu}} + E_p + M_{(A-1)} - M_A$$

- Method used at high energy e.g. MINOS, OPERA
- Nucleus carries little energy
 ⇒ avoid nuclear uncertainty
- Uncertainty in hadron (proton) energy measurement
 ⇒ Detect/identify each hadrons

FGD around the vertex **TPC** detects before interaction

Comparing two method to untangle the nuclear and hadronic uncertainties

CCQE cross section

- Cross section is larger than MC up to a few GeV but OK for NOMAD (consistent with large effective M_A)
- Meson exchange current? Nuclear/hadronic effects need to be understood!

CCQE Q² distrib.

- Enhancement at high Q² region for K2K, SciBooNE, MiniBooNE and MINOS, but consistent for NOMAD. Larger effective M_A?
- Deficit at low Q² region Nuclear effect (Pauli blocking etc.)?

0.4

0.6

MINOS

0.8

1.0

Expected SK analysis

- Input cross sections from ND280, miniBooNE etc.
 - $-v_{\mu}$ disappearance
 - CC1π, NC1π
 - Very sensitive to π momentum
 - ve appearance
 - NC1π⁰, beam v_e
- Calibration of the SK responses
 - Optical parameters
 - PMT response
 - More stringent study may be required

2010 February

$R_{far/near}$ turns out to be robust against hadron production models

MINOS v_e appearance result

MPPC studies

