

MiniBooNE:

H. A. Tanaka Princeton University

Neutrinos in the Standard Model:

gColorZWWeak chargeγElectric charge

Quarks: color, weak charge, electric charge Charged Leptons: color, weak charge, electric charge

Neutrinos:

celer, weak charge, electric charge

Neutrinos interact only through the weak interactions (+ gravity)

 1 GeV neutrino in lead has an interaction length >10⁹ km Photon interaction length in lead: 0.56 cm

Neutrino Interactions:

• "CC": neutrino converts to a charged lepton l_{α}

Defines flavor eigenstate of neutrino
Antineutrino produces positively charged lepton
Flavor of (anti)neutrinos also defined by decay ("tag" at production)
"NC": neutrino scatters off target, maintains identity

Mixing in Leptons and Quarks

$$egin{aligned} &|d_lpha
angle = \sum_i V^*_{lpha i} |d_i
angle \ &lpha = (d,s,b) ~~i \ &|
u_lpha
angle = \sum_i U^*_{lpha i} |
u_i
angle \ &lpha = (e,\mu, au) ~~i \end{aligned}$$

- Mass eigenstates ≠
 Flavor eigenstates
- Allows flavor-changing interactions
- No theoretical guidance

Quark Sector:

Flavor-changing decays Mixing/oscillations CP violation

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} -4\Sigma_{i>j} \Re(U) \sin^{2}[1.27\Delta m_{ij}^{2}(L/E)] +2\Sigma_{i>j} \Im(U) \sin^{2}[2.54\Delta m_{ij}^{2}(L/E)]$$

Neutrino Oscillations:

$$egin{aligned} &|d_lpha
angle = \sum_i V^*_{lpha i} |d_i
angle \ &lpha = (d,s,b) \ i \ &|
u_lpha
angle = \sum_i U^*_{lpha i} |
u_i
angle \ &lpha = (e,\mu, au) \ i \end{aligned}$$

- Mass eigenstates ≠
 Flavor eigenstates
- Allows flavor-changing interactions
- No theoretical guidance

Lepton Sector: Neutrino oscillations $\alpha = (e, \mu, \tau)$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} -4\Sigma$$

"Neutrino of type α , energy ETraverses distance LObserved as neutrino of type β " Observe as: deficit of v_{α} $\delta_{\alpha\beta}$ appearance of v_{β} $-4\Sigma_{i>j}\Re(U)\sin^{2}[1.27\Delta m_{ij}^{2}(L/E)]$ $+2\Sigma_{i>j}\Im(U)\sin^{2}[2.54\Delta m_{ij}^{2}(L/E)]$

Neutrino Oscillations:

$$egin{aligned} &|d_lpha
angle = \sum_i V^*_{lpha i} |d_i
angle \ &lpha = (d,s,b) ~~i \ &|
u_lpha
angle = \sum_i U^*_{lpha i} |
u_i
angle \ &lpha = (e,\mu, au) ~~i \end{aligned}$$

- Mass eigenstates ≠
 Flavor eigenstates
- Allows flavor-changing interactions
- No theoretical guidance

- Beam: 8 GeV protons on Be Produce ~0.8 GeV ν_μ beam 540 m baseline 5.6 x 10²⁰ POT for analysis
- Detector: 800 ton sphere of mineral oil 550 cm inner "tank" region (1280 PMT) Outer "veto" region (240 PMTs)

Detect v interactions via Č/Scintillation Search for $v_{\mu} \rightarrow v_{e}$, L/E~1 km/GeV

LSND Oscillations:

 $\Delta m^2 \sim 0.1-10 \text{ eV}^2 (\text{L/E} \sim 1 \text{ km/GeV})$ $\sin^2 2\theta \sim 0.001-0.04$ (includes constraints)

Unconfirmed by other experiments Not ruled out, either

Evidence for $\overline{\nu}_{\mu} \longrightarrow \overline{\nu}_{e}$ oscillations Stopped π^+ beam produces $\overline{\nu}_{\mu}$ \dot{C}/n -capture signature Excess of 87.9 ±22.4 ±6.0 events ∆m² (eV ²) 0 KARMEN2 (90% CL) (90**%** CL) LSND (99% CL) LSND (90% CL) 10, 10⁻² 10^{-3} 10^{-2} 10⁻¹ 10

sin²2v

"Other" Oscillations:

Three Δm^2 with different orders of magnitudes:

- "Solar": $\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{ eV}^2$
- "Atmospheric": $\Delta m_{23}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$
- "LSND": $\Delta m^2 \sim 0.1-10 \text{ eV}^2$ Incompatible with three neutrino model

New physics (sterile v, CP(T) violation?) needed if confirmed

Identifying v_e Events

Event Topology: Angular Profile

n

• Neutrino energy from (E_e, θ_e)

The MiniBooNE Challenge:

Expect 0.25% oscillation probability:

- Identify O(10³) v_e oscillation events in O(10⁶) v_{μ} events
- Backgrounds: Reducible: Single ring muon events NC π⁰ (1 or 2 e-like rings) Δ→Nγ decay (1 e-like ring)

Irreducible/Intrinsic:

Genuine v_e events in beam from kaon/muon decay

Two approaches for reducible background
 Track Likelihood: Algorithmic:
 Form ratio of fit
 Use boosted decision tree
 likelihoods under
 different hypotheses
 of many variables

In this talk I will focus on the Track Likelihood approach

Likelihood Reconstruction:

Reconstructing one track events:

• Determine vertex, time, energy, direction of track (7 parameters)

 $\pi^0 \rightarrow$

• Fit model predicts light distribution to test hypothesis

Employ fits to four models:

- Single electron track
- Single muon track
- Two e tracks, free mass (12 parameters)
- Two e tracks, mass= m_{π^0} (11 parameters)

Use for parameter estimation and hypothesis testing $log(L_x/L_y) > 0$ if hypothesis x is preferred over y

Resolution/Discrimination dependent on quality of fit model

Analysis Strategy:

Boosted Decision Tree	Track Likelihood
"Fast" fits: vertex/energy/direction	"Full" fits:vertex/energy/direction
Calculate topology variables	Use track likelihoods
Many variables, maximize power	As few variables as possible
One BDT for all backgrounds	Staged background rejection "easiest \rightarrow hardest"

- Independent methods, orthogonal goals lead to two event selections that serve as a meaningful crosscheck
- Comparable sensitivities

Background Suppression:

Suppressing µ Events:

 $log(L_e/L_\mu)$: compare likelihoods returned by e and μ fits.

- $log(L_e/L_u)>0$ indicates electron hypothesis is favored.
- Discrimination easier at higher energy (increasing μ tracklength)
- μ events cross checked with μ -DAR tagged sample

Suppressing π⁰ Events

Free mass 2-track fit (2T) employed to reconstruct mass

• Background π^0 reconstruct near m_{π^0} , signal ν_e have smaller mass

Fixed mass 2-track fit (2T π) used to form log(L_e/L_{π})

• $\log(L_e/L_\pi)$ >0 for signal v_e

Towards the Signal Region

Look at mass for $log(L_e/L_{\pi^0}) < 0$ events:

• Signal-like in mass, background like in $log(L_e/L_{\pi^0})$

Off-axis flux from NuMI: Enhanced in three body decays $\Rightarrow v_e$

• Probe signal region of $log(L_e/L_{\pi^0})$

Selection Efficiency:

Energy spectrum used for signal extraction

• $log(L_e/L_\mu)$: ~flat

 v_e/π^0 separation more difficult at higher energy

>50% efficiency after precuts across signal region

Expected Background

- Signal/Background ~1/4 at LSND central value
- Comparable contributions from intrinsic/reducible background

Constraining/Cross-checking Backgrounds

Monte Carlo Simulation and Constraints/Cross checks

Monte Carlo Simulation:

- Beam simulation: meson production propagated through beam line, decayed to produce neutrinos
- Neutrino Event Generator:
 NUANCE: comprehensive v-(H/C/O) event generator
- Detector simulation propagates final state particles.

Flux prediction

HARP 8 GeV p-Be π^+ production measurements

Tune π/K production model to external production data Pions:

- HARP (8 GeV)
- BNL E910 (6/12 GeV)

Kaons:

- Data sets at 9.5-24 GeV
- 12 GeV E910 K⁰ analysis

Other uncertainties

- Hadronic cross sections (tuned to external data)
- Horn EM model
- Proton counting

Detector Model Uncertainties

Dominated by "Optical Model" Production, transport and detection of Č and scintillation light.

Account for Rayleigh/Raman scattering, absorption, fluorescence

μ-Decay-at-Rest electrons

- Well-know spectrum
- Abundant (cosmic μ)
- Fast simulation

Start with externally measured parameters and errors

- Constrain parameters with observed distributions of energy, Č ring profile, time distribution, etc.
- Propagate uncertainties by varying parameters according to constraints

Optical Model Constraints

- Spread represents uncertainties propagated to distribution
- NC elastic scattering (protons) used to constrain scintillation

If we measure the rate of v_{μ} CCQE in the detector:

The $\pi^{\scriptscriptstyle +} \twoheadrightarrow \mu^{\scriptscriptstyle +} \twoheadrightarrow \nu_e$ background

- comes from the same π^+ that produced ν_{μ} CCQE
- interacts with the same cross section (CCQE)
- Uncertainties in π^+ production/cross section at higher order

Oscillation signal: same neutrinos/cross section

CCQE:

Why ν_{μ} CCQE?

- Largest (and well-known) cross sections at these energies
- Simple one-ring muon topology
- Two-body kinematics allows determination of $E_{\nu}(E_{\mu}, \theta_{\mu})$

Identifying v_{μ} CCQE 92% of μ^{-} decay, producing e⁻ X_{μ} , X_{e} determines L (= μ tracklength) For single μ , L $\propto E_{\mu}$ Presence of other particles will disrupt this relation "Clean muon" selection

Identifying v_{μ} CCQE:

L(E) relationship predicts μ/e distance for a given E_{μ}

- Compare predicted/reconstructed decay electron position
- Brought to you by excellent position, energy, angular resolution

Measuring the v_{μ} Spectrum:

Determine E_v using two-body kinematics

- MC-based template gives true spectrum
- Push uncertainties (flux, v xsec, etc.) to higher order for predicted signal $v_{\mu} \rightarrow v_{e}$ oscillation events

 v_{e} from μ decay:

Geometry selects narrow phase space of forward $\pi \rightarrow \mu + \nu_{\mu}$ decays

$$E_{\nu} \sim \gamma \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}} (1 + \beta)$$

~ $0.38E_{\pi}$

 ν_{e} from μ decay background:

- Measuring v_{μ} spectrum measures π spectrum
- Same π decays give $\pi \rightarrow \mu \rightarrow v_e$ background
- Correct π spectrum to match data

Flux, v cross section uncertainties pushed to higher order

π^0 Rate and Spectrum

Momentum spectrum

- $log(L_e/L_{\mu})$ suppresses μ
- Purity ~90% or greater
- Default MC underpredicts π^0 at low momentum
- Range of analysis
 p=[0.0,1.5] GeV/c

Mass spectra in momentum bins

π⁰ Spectrum

MC templates used to to extract true p_{π^0} distribution

- MC prediction corrected to match data
- Flux/v xsec uncertainties
 in π⁰ rate now higher order 1000

Events/0.1 GeV/c Data Corr. Monte Carlo Uncorr. Monte Carlo PRELIMINARY 3000 2000 0.2 0.40.6 0.8 p_ (GeV/c)

 π^0 dominated by resonant Δ production $\Rightarrow \Delta \rightarrow N\gamma$ decays also constrained

v Cross section Uncertainties

CCQE Tuning

- Q² distribution used to tune nuclear parameters
- Brings other related kinematic quantities into agreement.

Other uncertainties are taken from "historical" data

(Important) low energy cross sections have large uncertainties

Internal data constraints/measurements critical for analysis

High Energy Data

High energy v_e flux dominated by K decay

- Constraint incorporated in signal extraction fit
- Small contribution from possible signal

Signal and Sensitivity:

S/B ~ 300/1200 for LSND central values

- Signal extracted in χ^2 fit (2 methods) incorporating systematic/statistical uncertainties.
- Comparable to 2002 run plan sensitivity

Conclusions and Outlook:

MiniBooNE:

Confirm/refute the LSND evidence for neutrino oscillations

Two parallel analyses for the $v_{\mu} \rightarrow v_{e}$ search

- Event likelihood ratio based on likelihoods returned from reconstruction algorithms
- Boosted decision tree with 207 variables optimized for maximum S/B separation
- Dominant background rates measured/constrained
 Analyses are in final stages
 - event selection finalized
 - systematics and signal extraction being finalized