

Probing extended Higgs sector through $b \rightarrow s \mu^{+} \mu^{-}$transition

Plan of talk

- $B_{s} \rightarrow \mu^{+} \mu^{-}$: Benchmark process for LHCb physics
- Possibility of invisibility of $B_{s} \rightarrow \mu^{+} \mu^{-}$at the LHCb
- Correlation between $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$
- Forward-Backward asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$
- Longitudinal Polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

In collaboration with Amol Dighe and S. Uma Sankar
[arXiv:0803.3511; PRD 78, 034020 (2008) \& PRD 78, 114025 (2008)]

Importance of FCNC

- The standard model (SM) of electroweak interaction is one of the most successful theory in particle physics.
- To date, almost all experimental tests of SM have agreed with its predictions.
- Still there are few sectors where this theory is to be verified completely.
- One such sector is the study of flavour changing neutral current (FCNC) decays.

Importance of FCNC

- Within the SM, FCNC decays are forbidden at tree level and can only occur at loop level, hence they are highly suppressed.
- Therefore FCNC can serve as an important probe to test SM at the loop level.
- A good way to search for new physics (physics beyond SM) is to look for process which are highly suppressed in the SM.
- Therefore FCNC process can also be useful in searching new physics (NP) and determining its Lorentz structure.

FCNC transition $\bar{b} \rightarrow \bar{s} \mu^{+} \mu^{-}$

- We consider the FCNC transition $\bar{b} \rightarrow \bar{s} \mu^{+} \mu^{-}$.
- The same quark level transition $\bar{b} \rightarrow \bar{s} \mu^{+} \mu^{-}$is responsible for the purely leptonic decay $B_{s} \rightarrow \mu^{+} \mu^{-}$and also for the semi-leptonic decays $B \rightarrow\left(K, K^{*}\right) \mu^{+} \mu^{-}$.

FCNC transition $\bar{b} \rightarrow \bar{s} \mu^{+} \mu^{-}$

- $B \rightarrow\left(K, K^{*}\right) \mu^{+} \mu^{-}$have been observed at BaBar and Belle [HFAG, April 2008]:

$$
\begin{aligned}
& B_{\exp }\left(B \rightarrow K \mu^{+} \mu^{-}\right)=0.42_{-0.08}^{+0.09} \times 10^{-6} \\
& B_{\exp }\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)=1.03_{-0.23}^{+0.26} \times 10^{-6}
\end{aligned}
$$

- Within the error bars, the SM prediction and data are consistent with each other.
- Experimental errors are expected to reduce to 2% at the forthcoming SuperB factories.
- The uncertainty in the SM prediction is mainly due to the uncertainty in the form factors and the CKM matrix element $\left|V_{t s}\right|$.

FCNC transition $\bar{b} \rightarrow \bar{s} \mu^{+} \mu^{-}$

- $B_{s} \rightarrow \mu^{+} \mu^{-}$is highly suppressed in the SM :

$$
B_{S M}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.35 \pm 0.32) \times 10^{-9}
$$

- This decay is yet to be observed in the experiments.
- The present upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is 5.8×10^{-8} at 2σ which is still an order of magnitude away from its SM prediction. [CDF Collaboration, arxiv:0712.1708 (hep-ex)]
- $B_{s} \rightarrow \mu^{+} \mu^{-}$can be observed at Tevatron only if $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)>10^{-8}$.
- $B_{s} \rightarrow \mu^{+} \mu^{-}$is a benchmark process for the LHCb physics.
- LHCb will be the first experiment to be able to probe $B_{s} \rightarrow \mu^{+} \mu^{-}$all the way down to its SM branching ratio.
- LHCb can reach SM sensitivity after one year of data collection.

Why is $B_{s} \rightarrow \mu^{+} \mu^{-}$important?

- $B_{s} \rightarrow \mu^{+} \mu^{-}$is highly suppressed within the SM, $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \sim 10^{-9}$.
- Observation of $B_{s} \rightarrow \mu^{+} \mu^{-}$with a branching ratio $\geq 10^{-8}$ will confirm the existence of NP.
- Look for NP which can provide an order of magnitude enhancement in $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$.
- NP in the form of tensor operators do not contribute to $B_{s} \rightarrow \mu^{+} \mu^{-}$as $\langle 0| \bar{b} \sigma^{\mu v} s\left|B_{s}\left(p_{B}\right)\right\rangle=0$.

Why is $B_{s} \rightarrow \mu^{+} \mu^{-}$important?

- NP in the form of vector/axial-vector operators is constrained by the data on $B\left[B \rightarrow\left(K, K^{*}\right) \mu^{+} \mu^{-}\right]$and cannot give rise to an order of magnitude enhancement in $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$.
- However if NP is in the form of S-P operators then $B\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$does not put any useful constraint on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and it can be as high as the present upper bound.
- Thus if $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \geq 10^{-8}$ then it can only be due to S-P operators. [Ashutosh Kumar Alok and S. Uma Sankar, PLB 620, 61 (2005)]
- Hence $B_{s} \rightarrow \mu^{+} \mu^{-}$is sensitive to NP models with extended Higgs sector like multi-Higgs doublet models, MSSM etc.

A legitimate question to ask at this stage is :
Does new physics scalar/pseudoscalar operators can only enhance $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$?

Effective $\bar{b} \rightarrow \bar{s} \mu^{+} \mu^{-}$Lagrangian

- $L\left(\bar{b} \rightarrow \bar{s} \mu^{+} \mu^{-}\right)=L_{S M}+L_{S P}$

$$
\begin{aligned}
L_{S M} & =\frac{\alpha G_{F}}{2 \sqrt{2} \pi} V_{t b} V_{t s}^{\star}\left\{C_{9} \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) s \bar{\mu} \gamma_{\mu} \mu\right. \\
& \left.+C_{10} \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) s \bar{\mu} \gamma_{\mu} \gamma_{5} \mu-2 \frac{C_{7}}{q^{2}} m_{b}\left(\bar{b} i \sigma_{\mu v} q^{v} s\right) \bar{\mu} \gamma_{\mu} \mu\right\}
\end{aligned}
$$

$$
L_{S P}=\frac{\alpha G_{F}}{2 \sqrt{2} \pi} V_{t b} V_{t s}^{\star}\left\{R_{S} \bar{b}\left(1+\gamma_{5}\right) s \bar{\mu} \mu+R_{P} \bar{b}\left(1+\gamma_{5}\right) s \bar{\mu} \gamma_{5} \mu\right\}
$$

- C_{7}, C_{9} and C_{10} are SM Wilson coefficients. Their values are: $C_{7}=-0.310, C_{9}=+4.138, C_{10}=-4.221$. [A. J. Buras, M. Munj, PRD52, 186 (1995)]
- q is the sum of the μ^{+}and μ^{-}momenta. R_{S} and R_{P} are the new physics couplings.

Branching ratio of $B_{s} \rightarrow \mu^{+} \mu^{-}$

-

$$
B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=a_{s}\left[\left(b_{S M}-b_{P}\right)^{2}+b_{S}^{2}\right]
$$

$$
b_{S M}=2 m_{\mu}\left|C_{10}\right|, \quad b_{P}=m_{B_{s}} R_{P}, \quad b_{S}=m_{B_{s}} R_{S}
$$

$$
a_{s} \equiv \frac{G_{F}^{2} \alpha^{2}}{64 \pi^{3}}\left|V_{t s}^{*} V_{t b}\right|^{2} \tau_{B_{s}} f_{B_{s}}^{2} m_{B_{s}}
$$

$B_{s} \rightarrow \mu^{+} \mu^{-}$can be invisible at the LHC

- The interference between the S-P new physics and SM operators can decrease the branching ratio $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$ far below its SM prediction.
- In fact it can even vanish, provided the following conditions are satisfied simultaneously:

$$
R_{S}=0, \quad R_{P}=\frac{2 m_{\mu}\left|C_{10}\right|}{m_{B_{s}}} \sim 0.17
$$

- Hence it may also be possible that LHC fails to find $B_{s} \rightarrow \mu^{+} \mu^{-}$.
- Therefore the new physics S-P operators can not only lead to a large enhancement in $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$but can also cause a large suppression.

Correlations between $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

Correlations between $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

- One good way to constrain new physics is to study the correlation between the observables which are sensitive to same type of new physics.
- Therefore it is natural to study the impact of large S-P couplings (that may provide an order of magnitude enhancement in $\left.B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right)$to the other related decays.
- We study the correlations between S-P new physics contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$.

Correlations between $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

The main motivation is to answer the following question:
Can an order of magnitude boost in $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and the experimental data on $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$can be explained simultaneously by S-P new physics?

$B_{s} \rightarrow \mu^{+} \mu^{-}$branching ratio

- We assume that the S-P new physics will provide an order of magnitude increase in $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$so that it is of the order of 10^{-8}.
- In such a situation, the SM amplitude can be neglected in the calculation of branching ratio of $B_{s} \rightarrow \mu^{+} \mu^{-}$.

$B_{s} \rightarrow \mu^{+} \mu^{-}$branching ratio

$$
\begin{gathered}
B_{S P}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\frac{G_{F}^{2} \alpha^{2} m_{B_{s}}^{3} \tau_{B_{s}}}{64 \pi^{3}}\left|V_{t b} V_{t s}^{*}\right|^{2} f_{B_{s}}^{2} \times\left(R_{S}^{2}+R_{P}^{2}\right) \\
f_{B_{s}}=(0.259 \pm 0.027) \mathrm{GeV} ;\left|V_{t s}\right|=(40.6 \pm 2.7) \times 10^{-3} \\
B_{S P}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(1.43 \pm 0.30) \times 10^{-7}\left(R_{S}^{2}+R_{P}^{2}\right)
\end{gathered}
$$

- Equating above expression to the present 2σ upper limit on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$, we get

$$
\left(R_{S}^{2}+R_{P}^{2}\right) \leq 0.70
$$

Allowed $R_{S}-R_{P}$ parameter space

- Thus, the allowed region in the $R_{S}-R_{P}$ parameter space is the interior of the circle of radius 0.84 centered at the origin.

Matrix elements for $B \rightarrow K \mu^{+} \mu^{-}$

- We now consider $B \rightarrow K \mu^{+} \mu^{-}$. The necessary matrix elements are:

$$
\begin{gathered}
\left\langle K\left(p^{\prime}\right)\right| \bar{b} \gamma_{\mu} s|B(p)\rangle=(2 p-q)_{\mu} f_{+}(z)+\left(\frac{1-k^{2}}{z}\right) q_{\mu}\left[f_{0}(z)-f_{+}(z)\right] \\
\left\langle K\left(p^{\prime}\right)\right| \bar{b} i \sigma_{\mu \nu} q^{v} s|B(p)\rangle=-\left[(2 p-q)_{\mu} q^{2}-\left(m_{B}^{2}-m_{K}^{2}\right) q_{\mu}\right] \frac{f_{T}(z)}{m_{B}+m_{K}} \\
\left\langle K\left(p^{\prime}\right)\right| \bar{b} s|B(p)\rangle=m_{B}\left(1-k^{2}\right) f_{0}(z)
\end{gathered}
$$

- $q_{\mu}=\left(p-p^{\prime}\right)_{\mu}$ is the four-momentum transferred to the dilepton system. $k=m_{K} / m_{B}$ and $z=q^{2} / m_{B}^{2}$.

$B \rightarrow K \mu^{+} \mu^{-}$branching ratio

$$
B_{\mathrm{tot}}=\left[5.25+0.18\left(R_{S}^{2}+R_{P}^{2}\right)-0.13 R_{P}\right] \times(1 \pm 0.20) \times 10^{-7}
$$

- $B_{\mathrm{tot}}=(1+\varepsilon) B_{\mathrm{SM}}$.
- ε is the fractional change in the branching ratio due to $\mathrm{S}-\mathrm{P}$ new physics.
- The maximum negative value that ε can take is -0.005 .

$B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$cannot go below its SM prediction

- S-P new physics cannot lower $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$by more than 0.5% below its SM value.
- Thus, if future experiments were to find $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$ below its SM prediction, then it is almost guaranteed that this deficit is not due to S-P new physics.

Allowed $R_{S}-R_{P}$ parameter space

- Equating the expression for $B \rightarrow K \mu^{+} \mu^{-}$to its experimental value, we get

$$
R_{S}^{2}+\left(R_{P}-0.36\right)^{2}=\frac{B_{\exp }}{(0.18 \pm 0.036) \times 10^{-7}}-29.04
$$

- The region in the $R_{S}-R_{P}$ plane allowed by the measurement of $B\left(B_{s} \rightarrow K \mu^{+} \mu^{-}\right)$is then an annulus centered at $(0,0.36)$.

Conditions for Tension

- No tension if there is overlap between $B_{s} \rightarrow \mu^{+} \mu^{-}$circle and $B \rightarrow K \mu^{+} \mu^{-}$annulus.
- There is tension if there is no overlap.
- "No overlap" will occur if the inner radius of the $B \rightarrow K \mu^{+} \mu^{-}$annulus is larger than the $B_{s} \rightarrow \mu^{+} \mu^{-}$circle.

Tension between $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$can be schematically understood with the following figure:

Tension between $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$and

 $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$- If we represent the radius of the leptonic circle by r_{ℓ} and the inner radius of the semileptonic annulus by $r_{i n}$, then

$$
r_{i n}-r_{\ell}>0.36
$$

would imply that the regions allowed by the two branching ratios do not overlap.

- Given the current value of $r_{l}=0.84$, we require $0<r_{\text {in }}<1.2$ for an overlap.
- With present experimental and theoretical errors, $r_{i n}=0$.
- For the tension to be manifest in future experiments, the reduction of errors in $B_{\exp }$ and B_{SM} is the most crucial.

Tension between $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$and

 $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$- The present upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$, restricts the maximum value of ε to be 0.025 .
- Hence the S-P new physics cannot enhance $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$by more than $\sim 3 \%$ above its SM value.
- Thus the allowed values of $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$are restricted within a narrow range around its SM prediction.

Forward-backward asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$

FB asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$

- Apart from the branching ratios of the purely leptonic and semi-leptonic decays, there are other observables which are sensitive to the S-P new physics contribution to $b \rightarrow s \mu^{+} \mu^{-}$transitions.
- These are forward-backward (FB) asymmetry $A_{F B}$ of muons in $B \rightarrow K \mu^{+} \mu^{-}$and longitudinal polarization (LP) asymmetry $A_{L P}$ of muons in $B_{s} \rightarrow \mu^{+} \mu^{+}$.
- Both these are predicted to be zero in the SM. Therefore, any nonzero measurement of one of these asymmetries is a signal for new physics.

FB asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$

- The FB asymmetry is defined as
- $z=q^{2} / m_{B}^{2}, q$ is the sum of $\mu^{-} \& \mu^{+}$momenta and θ is the angle between the momenta of K meson and μ^{-}in the dilepton center of mass frame.
- In the SM, FB asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$vanishes because the hadronic current for $B \rightarrow K$ transition does not have any axial vector contribution.
- This asymmetry can be nonzero in multi-Higgs doublet models and supersymmetric models due to the contributions from the extended Higgs sector.
- Therefore FB asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$is expected to serve as an important probe to test the existence of an extended Higgs sector.

FB asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$

- The average (or integrated) FB asymmetry of muons in $B \rightarrow K \mu^{+} \mu^{-}$, which is denoted by $\left\langle A_{F B}\right\rangle$, has been measured by BaBar and Belle to be

$$
\begin{aligned}
& \left\langle A_{F B}\right\rangle=\left(0.15_{-0.23}^{+0.21} \pm 0.08\right) \quad \text { (BaBar) } \\
& \left\langle A_{F B}\right\rangle=(0.10 \pm 0.14 \pm 0.01) \text { (Belle) }
\end{aligned}
$$

- These measurements are consistent with zero. But on the other hand, they can be as high as $\sim 40 \%$ within 2σ error bars.
- Our aim is to investigate what constraints the recently improved upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$puts on the possible S-P new physics contribution to $A_{F B}$ and $A_{L P}$.
- Do S-P operators enhance these observables to sufficiently large values to be measurable in future experiments?

FB asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$

- The calculation of FB asymmetry gives

$$
A_{F B}(z)=\frac{2 \Gamma_{0} a_{1}(z) \phi \beta_{\mu}^{2}}{d \Gamma / d z}\left(\frac{m_{\mu} R_{S}}{m_{B}}\right)
$$

$$
\begin{align*}
\Gamma_{0}= & \frac{G_{F}^{2} \alpha^{2}}{2^{9} \pi^{5}}\left|V_{t b} V_{t s}^{*}\right|^{2} m_{B}^{5} \\
a_{1}(z)= & \frac{1}{2}\left(1-k^{2}\right) C_{9} f_{0}(z) f_{+}(z) \\
& +(1-k) C_{7} f_{0}(z) f_{T}(z), \\
\phi= & 1+k^{4}+z^{2}-2\left(k^{2}+k^{2} z+z\right), \\
\beta_{\mu}= & \left(1-\frac{4 \hat{m}_{\mu}^{2}}{z}\right) . \tag{1}
\end{align*}
$$

- $d \Gamma / d z$ is the differential decay rate.

FB asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$

- The average FB asymmetry is obtained by integrating the numerator and denominator separately over dilepton invariant mass, which leads to

$$
\left\langle A_{F B}\right\rangle=\frac{5.25 \times 10^{-9} R_{S}}{\left[5.25+0.18\left(R_{S}^{2}+R_{P}^{2}\right)-0.13 R_{P}\right] \times 10^{-7}}(1 \pm 0.3)
$$

- With the present upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$, the maximum value of $\left\langle A_{F B}\right\rangle$ is 1.34% at 2σ.
- If $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is bounded to 10^{-8}, the 2σ maximum value of $\left\langle A_{F B}\right\rangle$ will be only 0.56%.

FB asymmetry in $B \rightarrow K \mu^{+} \mu^{-}$

- The measurement of an asymmetry $\left\langle A_{F B}\right\rangle$ of a decay with the branching ratio \mathscr{B} at $n \sigma$ C.L. with only statistical errors require

$$
N \sim \frac{1}{\mathscr{B}}\left(\frac{n}{\left\langle A_{F B}\right\rangle}\right)^{2}
$$

number of events.

- For $B \rightarrow K \mu^{+} \mu^{-}$, if $\left\langle A_{F B}\right\rangle$ is 1% at 2σ C.L., then the required number of events will be as high as 10^{11} !
- Therefore it is very difficult to observe such a low value of FB asymmetry in experiments. Hence FB asymmetry of muons in $B \rightarrow K \mu^{+} \mu^{-}$will play no role in testing S-P new physics.

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

- The longitudinal polarization asymmetry of muons in $B_{s} \rightarrow \mu^{+} \mu^{-}$is defined as

$$
A_{L P}=\frac{N_{R}-N_{L}}{N_{R}+N_{L}}
$$

$N_{R}\left(N_{L}\right)$ is the number of μ^{-}emerging with positive (negative) helicity

- The longitudinal polarization asymmetry of muons in $B_{s} \rightarrow \mu^{+} \mu^{-}$is a clean observable that depends only on S-P new physics operators.
- It vanishes in the SM. It is nonzero if and only if the new physics contribution is in the form of S-P operator.
- Therefore any nonzero measurement of this observable $A_{L P}$ will confirm the existence of an extended Higgs sector.

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

-

$$
A_{L P}=\frac{2 b_{S}\left(b_{S M}-b_{P}\right)}{\left(b_{S M}-b_{P}\right)^{2}+b_{S}^{2}}
$$

- $A_{L P}$ can be nonzero if and only if $b_{S} \neq 0$, i.e. for $A_{L P}$ to be nonzero, we must have contribution from S-P operators.
- Within the $\mathrm{SM}, b_{S} \simeq 0$ and hence $A_{L P} \simeq 0$.
- We will determine the allowed values of $A_{L P}$ consistent with the present upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$, and explore the correlation between these two quantities.

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

Figure: $A_{L P}$ vs R_{s} plot for $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(5.8,3.0,1.0) \times 10^{-8}$
$\left(A_{L P}\right)_{\max }$ for present upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is 100%. $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$will be unable to put any constraint on $A_{L P}$ even if it is as low as 10^{-8}.

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

Figure: $A_{L P}$ vs R_{s} plot for $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(5.5,3.5,1.5) \times 10^{-9}$
$A_{L P}$ can be 100% even if $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is close to its SM prediction !!

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

- The measurement of $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$will only give the allowed range for the values of the S-P couplings R_{S} and R_{P}.
- However the simultaneous determination of $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$ and $A_{L P}$ will allow the determination of new physics scalar coupling R_{S} and this in turn will enable us to determine the new physics pseudoscalar coupling R_{P}.

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

- We now consider two exciting experimental possibilities, all of which can be accounted for with S-P new physics.
- $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is consistent with SM but $A_{L P} \neq 0$.
- Both $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $A_{L P}$ are consistent with the SM.

$B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is consistent with SM but $A_{L P} \neq 0$

- It is possible to have a non-zero value of $A_{L P}$ even if $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is equal to its SM prediction.
- $B_{s} \rightarrow \mu^{+} \mu^{-}$branching ratio is

$$
B\left(B_{S} \rightarrow \mu^{+} \mu^{-}\right)=a_{S}\left[\left(b_{S M}-b_{P}\right)^{2}+b_{S}^{2}\right]
$$

- If $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is equal to its SM prediction, then

$$
a_{S}\left[\left(b_{S M}-b_{P}\right)^{2}+b_{S}^{2}\right]=a_{S} b_{S M}^{2} .
$$

$B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is consistent with SM but $A_{L P} \neq 0$

- This gives us a circle in $b_{S}-b_{P}$ plane with center at $\left(0, b_{S M}\right)$:

$$
\left(b_{P}-b_{S M}\right)^{2}+b_{S}^{2}=b_{S M}^{2}
$$

- This circle passes through the origin $\left(b_{S}=b_{P}=0\right)$, which corresponds to the SM.
- However, in general the points on the circle have nonzero b_{S}, and hence imply nonvanishing $A_{L P}$.
- Therefore it is possible to have a nonzero value of $A_{L P}$ even if $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is equal to its SM prediction.

Both $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $A_{L P}$ are consistent with the SM

- Lepton polarization asymmetry vanishes when either $b_{S}=0$ or $b_{P}=b_{S M}$.
- Thus there exists the interesting possibility of nontrivial S-P new physics even when both $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $A_{L P}$ are consistent with the SM.
- This occurs when:
$b_{S}=0, b_{P}=2 b_{S M}$.
$b_{S}= \pm b_{S M}, b_{P}=b_{S M}$.
- Therefore, the absence of S-P new physics is not guaranteed simply by the consistency of these observables with the SM; more channels need to be examined to rule out this possibility completely.

Conclusions

- We consider new physics in the form of S-P operators.
- We show that S-P new physics cannot decrease the branching ratio of $B \rightarrow K \mu^{+} \mu^{-}$below its SM prediction.
- The S-P new physics operators are strongly constrained by the upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$, and in turn restrict the allowed values of $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$to within a narrow range around its SM prediction.
- Future precise measurements of these two branching ratios may not only give an evidence for new physics, but also reveal the nature of its Lorentz structure.

Conclusions

- Apart from $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$, observables such as FB asymmetry of muons in $B \rightarrow K \mu^{+} \mu^{-}$and LP asymmetry of muons in $B_{s} \rightarrow \mu^{+} \mu^{-}$ are also sensitive to S-P operators.
- $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$puts very stringent constraint on S-P new physics contribution to $\left\langle A_{F B}\right\rangle$ and restricts its value to be less than $\sim 1 \%$.
- Thus the present upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$makes searching for S-P new physics through $\left\langle A_{F B}\right\rangle$ a futile exercise.

Conclusions

- $A_{L P}$ is sensitive only to S-P operators and hence its nonzero value will give direct evidence for a non-standard Higgs sector.
- The present upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$does not put any constraint on $A_{L P}$. Indeed, $A_{L P}$ can be 100% even if $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is close to its SM prediction.
- A simultaneous determination of $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $A_{L P}$ will enable us to separate the new physics scalar and pseudoscalar contributions.
- Consistency of both $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $A_{L P}$ with SM cannot rule out S-P new physics. However tension between $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$will rule out new physics in the form of only S-P operators.

Diagrams contributing to the $b \rightarrow s l^{+} l^{-}$in extended Higgs sector

$B \rightarrow K \mu^{+} \mu^{-}$decay amplitude

The decay amplitude for $B(p) \rightarrow K\left(p^{\prime}\right) \mu^{+}\left(p_{+}\right) \mu^{-}\left(p_{-}\right)$is given by

$$
\begin{align*}
M\left(B \rightarrow K \mu^{+} \mu^{-}\right)= & \frac{\alpha G_{F}}{2 \sqrt{2} \pi} V_{t b} V_{t s}^{\star} \times \\
& {\left[\left\langle K\left(p^{\prime}\right)\right| \bar{b} \gamma_{\mu} s|B(p)\rangle \times\right.} \\
& \left\{C_{9}^{\mathrm{eff}} \bar{u}\left(p_{-}\right) \gamma_{\mu} v\left(p_{+}\right)+C_{10} \bar{u}\left(p_{-}\right) \gamma_{\mu} \gamma_{5} v\left(p_{+}\right)\right\} \\
- & \frac{2 C_{7}^{\mathrm{eff}} m_{b}}{q^{2}}\left\langle K\left(p^{\prime}\right)\right| \bar{b} i \sigma_{\mu v} q^{v} s|B(p)\rangle \bar{u}\left(p_{-}\right) \gamma_{\mu} v\left(p_{+}\right) \\
+ & \left\langle K\left(p^{\prime}\right)\right| \bar{b} s|B(p)\rangle \times \\
& \left.\left\{R_{S} \bar{u}\left(p_{-}\right) v\left(p_{+}\right)+R_{P} \bar{u}\left(p_{-}\right) \gamma_{5} v\left(p_{+}\right)\right\}\right] \tag{2}
\end{align*}
$$

where $q_{\mu}=\left(p-p^{\prime}\right)_{\mu}=\left(p_{+}+p_{-}\right)_{\mu}$.

$B \rightarrow K \mu^{+} \mu^{-}$double differential decay width

- The double differential decay width can be calculated as

$$
\begin{align*}
\frac{d^{2} \Gamma}{d z d \cos \theta}= & \frac{G_{F}^{2} \alpha^{2}}{2^{9} \pi^{5}}\left|V_{t b} V_{t s}^{*}\right|^{2} m_{B}^{5} \phi^{1 / 2} \beta_{\mu} \\
\times & {\left[\left(|A|^{2} \beta_{\mu}^{2}+|B|^{2}\right) z\right.} \\
& +\frac{1}{4} \phi\left(|C|^{2}+|D|^{2}\right)\left(1-\beta_{\mu}^{2} \cos ^{2} \theta\right) \\
& +2 \hat{m}_{\mu}\left(1-k^{2}+z\right) \operatorname{Re}\left(B C^{*}\right)+4 \hat{m}_{\mu}^{2}|C|^{2} \\
& \left.+2 \hat{m}_{\mu} \phi^{\frac{1}{2}} \beta_{\mu} \operatorname{Re}\left(A D^{*}\right) \cos \theta\right] \tag{3}
\end{align*}
$$

- The FB asymmetry arises from the $\cos \theta$ term in the above equation.

$B \rightarrow K \mu^{+} \mu^{-}$double differential decay width

- The definitions used in the expression of double differential decay rate are:

$$
\begin{align*}
A \equiv & \frac{1}{2}\left(1-k^{2}\right) f_{0}(z) R_{S} \\
B \equiv & -\hat{m}_{\mu} C_{10}\left\{f_{+}(z)-\frac{1-k^{2}}{z}\left(f_{0}(z)-f_{+}(z)\right)\right\} \\
& +\frac{1}{2}\left(1-k^{2}\right) f_{0}(z) R_{P} \\
C \equiv & C_{10} f_{+}(z) \\
D \equiv & C_{9}^{e f f} f_{+}(z)+2 C_{7}^{\text {eff }} \frac{f_{T}(z)}{1+k} \\
\phi \equiv & 1+k^{4}+z^{2}-2\left(k^{2}+k^{2} z+z\right) \\
\beta_{\mu} \equiv & \left(1-\frac{4 \hat{m}_{\mu}^{2}}{z}\right) \tag{4}
\end{align*}
$$

- $z=q^{2} / m_{B}^{2}, k=m_{K} / m_{B}, \hat{m}_{\mu}=m_{\mu} / m_{B}$ and θ is the angle

$B \rightarrow K \mu^{+} \mu^{-}$double differential decay width

- The kinematical variables are bounded as

$$
\begin{array}{r}
-1 \leq \cos \theta \leq 1 \\
4 \hat{m}_{\mu}^{2} \leq z \leq(1-k)^{2}
\end{array}
$$

Form factors

The form factors $f_{+, 0, T}$ can be calculated in the light cone QCD approach. Their q^{2} dependence is given by

$$
\begin{equation*}
f(z)=f(0) \exp \left(c_{1} z+c_{2} z^{2}+c_{3} z^{3}\right), \tag{5}
\end{equation*}
$$

where the parameters $f(0), c_{1}, c_{2}$ and c_{3} for each form factor are given below:

	$f(0)$	c_{1}	c_{2}	c_{3}
f_{+}	$0.319_{-0.041}^{+0.052}$	1.465	0.372	0.782
f_{0}	$0.319_{-0.041}^{+0.052}$	0.633	-0.095	0.591
f_{T}	$0.355_{-0.055}^{+0.016}$	1.478	0.373	0.700

Table: Form factors for the $B \rightarrow K$ transition.

$B_{s} \rightarrow \mu^{+} \mu^{-}$decay amplitude

The decay amplitude for $B_{s} \rightarrow \mu^{+} \mu^{-}$is given by

$$
\begin{aligned}
M\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)= & \frac{\alpha G_{F}}{2 \sqrt{2} \pi} V_{t b} V_{t s}^{\star}\langle 0| \bar{s} \gamma_{5} b\left|B_{s}\right\rangle \\
& \times\left[R_{S} \bar{u}\left(p_{\mu}\right) v\left(p_{\bar{\mu}}\right)+R_{P} \bar{u}\left(p_{\mu}\right) \gamma_{5} v\left(p_{\bar{\mu}}\right)\right] .
\end{aligned}
$$

On substituting

$$
\langle 0| \bar{s} \gamma_{5} b\left|B_{s}\right\rangle=-i \frac{f_{B_{s}} m_{B_{s}}^{2}}{m_{b}+m_{s}}, \text { we get }
$$

$M\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=-i \frac{\alpha G_{F}}{2 \sqrt{2} \pi} V_{t b} V_{t s}^{\star} \frac{f_{B_{s}} m_{B_{s}}^{2}}{m_{b}+m_{s}}$ $\times\left[R_{S} \bar{u}\left(p_{\mu}\right) v\left(p_{\bar{\mu}}\right)+R_{P} \bar{u}\left(p_{\mu}\right) \gamma_{5} v\left(p_{\bar{\mu}}\right)\right]$,
where m_{b} and m_{s} are the masses of bottom and strange quark, respectively.

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

- In the rest frame of μ^{+}, we can define only one direction \vec{p}_{-}, the three momentum of μ^{-}.
- The unit longitudinal polarization 4 -vectors along that direction are

$$
\bar{s}_{\mu^{ \pm}}^{\mu}=\left(0, \hat{e}_{L}^{ \pm}\right)=\left(0, \pm \frac{\vec{p}_{-}}{\left|\vec{p}_{-}\right|}\right) .
$$

- Transformation of unit vectors from the rest frame of μ^{+}to the center of mass frame of leptons (which is also the rest frame of B_{s} meson) can be accomplished by the Lorentz boost.
- After the boost, we get
energy.

$$
s_{\mu^{ \pm}}^{\mu}=\left(\frac{\left|\vec{p}_{-}\right|}{m_{\mu}}, \pm \frac{E_{\mu} \vec{p}_{-}}{m_{\mu}\left|\vec{p}_{-}\right| \mid}\right), \text {where } E_{\mu} \text { is the muon }
$$

- The longitudinal polarization asymmetry of muons in $B_{s} \rightarrow \mu^{+} \mu^{-}$is defined as

$$
A_{L P}^{ \pm}=\frac{\Gamma\left(\hat{e}_{L}^{ \pm}\right)-\Gamma\left(-\hat{e}_{L}^{ \pm}\right)}{\Gamma\left(\hat{e}_{L}^{ \pm}\right)+\Gamma\left(-\hat{e}_{L}^{ \pm}\right)} .
$$

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

- Eliminating $b_{S M}$ and b_{P} from $A_{L P}$ using $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$ expression, we get

$$
A_{L P}= \pm \frac{2 a_{s} b_{S} \sqrt{\frac{B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}{a_{s}}-b_{S}^{2}}}{B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}
$$

- We now explore the correlation between $A_{L P}$ and $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$.

Longitudinal polarization asymmetry in $B_{s} \rightarrow \mu^{+} \mu^{-}$

Figure: Plot between $\left|A_{L P}\right|$ and $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$for different R_{S} values, when $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \lesssim 10^{-8}$. The vertical shaded band corresponds to 1σ theoretical prediction within the SM.

$B \rightarrow K^{*}$ matrix elements

$$
\begin{aligned}
& \left\langle K^{*}\left(p_{K^{*}}\right)\right| \bar{s} \gamma_{\mu} b\left|B\left(p_{B}\right)\right\rangle=i \varepsilon_{\mu \vartheta \lambda \sigma} \varepsilon^{v}\left(p_{K^{*}}\right)\left(p_{B}+p_{K^{*}}\right)^{\lambda} \\
& \times\left(p_{B}-p_{K^{*}}\right)^{\sigma} V\left(q^{2}\right), \\
& \left\langle K^{*}\left(p_{K^{*}}\right)\right| \bar{s}_{\gamma} \gamma_{\mu} b\left|B\left(p_{B}\right)\right\rangle=\varepsilon_{\mu}\left(p_{K^{*}}\right)\left(m_{B}^{2}-m_{K^{*}}^{2}\right) A_{1}\left(q^{2}\right) \\
& -(\varepsilon . q)\left(p_{B}+p_{K^{*}}\right) \mu A_{2}\left(q^{2}\right), \\
& \left\langle K^{*}\right| \bar{s} \gamma_{5} b|B\rangle=-i\left(\frac{2 m_{K^{*}}}{m_{b}-m_{s}}\right) A_{0}\left(q^{2}\right)(q \cdot \varepsilon) \text {. }
\end{aligned}
$$

where $q=p_{l^{+}}+p_{l^{-}}$.

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

$-$

$$
L_{S P}=\frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b} V_{t s}^{\star}\left\{\tilde{R}_{S}\left(\bar{b} P_{R} s\right) \bar{\mu} \mu+\tilde{R}_{P}\left(\bar{b} P_{R} s\right) \bar{\mu} \gamma_{5} \mu\right\}
$$

- \tilde{R}_{S} and \tilde{R}_{P} are the scalar and pseudoscalar new physics couplings respectively, which in general can be complex.
- $\tilde{R}_{S} \equiv R_{S} e^{i \delta_{S}}, \tilde{R}_{P} \equiv R_{P} e^{i \delta_{P}}$.
- Here the phases are restricted to be $0 \leq\left(\delta_{S}, \delta_{P}\right)<\pi$, whereas R_{S} and R_{P} can take positive as well as negative values.

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and

$B \rightarrow K \mu^{+} \mu^{-}$

- When \tilde{R}_{S} and \tilde{R}_{P} are complex, the constraint becomes:

$$
R_{S}^{2}+\left(R_{P}-0.36 \cos \delta_{P}\right)^{2}=\frac{B_{\exp } \times 10^{-7}}{(0.18 \pm 0.036)}-29.17+\left(0.36 \cos \delta_{P}\right)^{2}
$$

- For nonzero δ_{P}, the center of the semileptonic annulus shifts along the R_{P} axis, while the radius of the annuli are almost unchanged.
- If the allowed regions do not overlap for $\delta_{P}=0$, then they will not overlap for any value of δ_{P}.
- Hence the tension between $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$persists, and gives rise to the same constraints on the semileptonic branching ratio even if the S-P NP couplings are complex.

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

- In writing the effective S-P new physics Lagrangian $L_{S P}$, we considered only the quark bilinear $\bar{b} P_{R} s$.
- Lorentz Invariance of the Lagrangian also allows the bilinear $\bar{b} P_{L} s$ in general.
- We take this generalization into account by replacing $\bar{b} P_{R} S$ by $\bar{b}\left(\alpha P_{L}+P_{R}\right) s$, where α is the strength of the $\bar{b} P_{L} s$ bilinear relative to that of $\bar{b} P_{R} s$.

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

- Thus the general expressions for the branching ratios of the two processes become:
$B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(1-\alpha)^{2}\left(R_{S}^{2}+R_{P}^{2}\right)(1.43 \pm 0.30) \times 10^{-7}$.
- $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)=$ $\left[5.25+0.18(1+\alpha)^{2}\left(R_{S}^{2}+R_{P}^{2}\right)-0.13(1+\alpha) R_{P}\right](1 \pm 0.20) \times$ 10^{-7}.
- For $\alpha=0$, above equations reduce to the previous equations.

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and

 $B \rightarrow K \mu^{+} \mu^{-}$

Figure shows $\varepsilon_{\text {max }}$ (maximum fractional deviation of $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$from SM value, as a function of 2σ upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$.

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

- The minimum allowed value of ε is almost independent of the value of α and the leptonic upper bound, and is approximately -0.005 .
- For a class of models with multiple Higgs doublets, $\alpha=0$, $\varepsilon_{\text {max }}$ is restricted to +0.025 , as seen earlier.
- With the additional freedom generated by the extra parameter α, this severe constraint is relaxed.
- For example, for the models with $\alpha \approx 1.5$, the value of ε may be as large as +0.7 .

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

- When $\alpha<0$, the expression for $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$indicates that the constraints on R_{S} and R_{P} should become more restrictive. As a result, ε is constrained to be even smaller.
- $\varepsilon_{\text {max }}$ for negative α are very close to zero, and the corresponding $\varepsilon_{\text {max }}$ curves are almost overlapping.
- This implies that for negative α, any significant deviation of $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$from SM is impossible with S-P NP.

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

- For the measurements of $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$to be compatible with S-P NP, the lower bound on $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$should be less than $\left(1+\varepsilon_{\max }\right) B_{\mathrm{SM}}$.
- Thus, the upper bound on $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and the lower bound on $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$allow us to constrain the value of α in a class of models that involve new physics scalar/pseudoscalar couplings.

Tension between S-P contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow K \mu^{+} \mu^{-}$

- For the special case $\alpha=1$, the new physics has no contribution to $B_{s} \rightarrow \mu^{+} \mu^{-}$because the quark bilinear is pure scalar and the corresponding pseudoscalar meson to vacuum transition matrix element is zero.
- In such cases, $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is entirely due to the SM , and provides no constraints on $B\left(B \rightarrow K \mu^{+} \mu^{-}\right)$.

