

Probing extended Higgs sector through $b \rightarrow s \mu^+ \mu^-$ transition

Ashutosh Kumar Alok

Seminar @ UdeM, Montreal

- $B_s \rightarrow \mu^+ \mu^-$: Benchmark process for LHCb physics
- Possibility of invisibility of $B_s \rightarrow \mu^+ \mu^-$ at the LHCb
- Correlation between $B(B_s \rightarrow \mu^+ \mu^-)$ and $B(B \rightarrow K \mu^+ \mu^-)$
- Forward-Backward asymmetry in $B \rightarrow K \mu^+ \mu^-$
- Longitudinal Polarization asymmetry in $B_s \rightarrow \mu^+ \mu^-$

| ▲ 同 ▶ ▲ 国 ▶ | 国 | シ へ ()

In collaboration with Amol Dighe and S. Uma Sankar

[arXiv:0803.3511; PRD 78, 034020 (2008) & PRD 78, 114025 (2008)]

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ • • ○ � () ●

- The standard model (SM) of electroweak interaction is one of the most successful theory in particle physics.
- To date, almost all experimental tests of SM have agreed with its predictions.
- Still there are few sectors where this theory is to be verified completely.
- One such sector is the study of flavour changing neutral current (FCNC) decays.

(日本)(日本)(日本)(日本)

- Within the SM, FCNC decays are forbidden at tree level and can only occur at loop level, hence they are highly suppressed.
- Therefore FCNC can serve as an important probe to test SM at the loop level.
- A good way to search for new physics (physics beyond SM) is to look for process which are highly suppressed in the SM.
- Therefore FCNC process can also be useful in searching new physics (NP) and determining its Lorentz structure.

* 伊 ト * ヨ ト * ヨ ト -

FCNC transition $\bar{b} \rightarrow \bar{s}\mu^+\mu^-$

- We consider the FCNC transition $\bar{b} \rightarrow \bar{s}\mu^+\mu^-$.
- The same quark level transition $\bar{b} \rightarrow \bar{s}\mu^+\mu^-$ is responsible for the purely leptonic decay $B_s \rightarrow \mu^+\mu^-$ and also for the semi-leptonic decays $B \rightarrow (K, K^*)\mu^+\mu^-$.

→ Ξ → < Ξ →</p>

FCNC transition $\bar{b} \rightarrow \bar{s}\mu^+\mu^-$

• $B \rightarrow (K, K^*)\mu^+\mu^-$ have been observed at BaBar and Belle [HFAG, April 2008]:

$$B_{exp}(B \to K\mu^+\mu^-) = 0.42^{+0.09}_{-0.08} \times 10^{-6}$$

$$B_{exp}(B \to K^* \mu^+ \mu^-) = 1.03^{+0.26}_{-0.23} \times 10^{-6}$$

- Within the error bars, the SM prediction and data are consistent with each other.
- Experimental errors are expected to reduce to 2% at the forthcoming SuperB factories.
- The uncertainty in the SM prediction is mainly due to the uncertainty in the form factors and the CKM matrix element |V_{ts}|.

• $B_s \rightarrow \mu^+ \mu^-$ is highly suppressed in the SM:

 $B_{SM}(B_s \to \mu^+ \mu^-) = (3.35 \pm 0.32) \times 10^{-9}$

- This decay is yet to be observed in the experiments.
- The present upper bound on $B(B_s \rightarrow \mu^+ \mu^-)$ is 5.8×10^{-8} at 2σ which is still an order of magnitude away from its SM prediction. [CDF Collaboration, arxiv:0712.1708 (hep-ex)]
- $B_s \rightarrow \mu^+ \mu^-$ can be observed at Tevatron only if $B(B_s \rightarrow \mu^+ \mu^-) > 10^{-8}$.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

- $B_s \rightarrow \mu^+ \mu^-$ is a benchmark process for the LHCb physics.
- LHCb will be the first experiment to be able to probe $B_s \rightarrow \mu^+ \mu^-$ all the way down to its SM branching ratio.
- LHCb can reach SM sensitivity after one year of data collection.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

- $B_s \rightarrow \mu^+ \mu^-$ is highly suppressed within the SM, $B(B_s \rightarrow \mu^+ \mu^-) \sim 10^{-9}$.
- Observation of $B_s \rightarrow \mu^+ \mu^-$ with a branching ratio $\geq 10^{-8}$ will confirm the existence of NP.
- Look for NP which can provide an order of magnitude enhancement in $B(B_s \rightarrow \mu^+ \mu^-)$.
- NP in the form of tensor operators do not contribute to $B_s \rightarrow \mu^+ \mu^-$ as $\langle 0 | \bar{b} \sigma^{\mu\nu} s | B_s(p_B) \rangle = 0$.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

- NP in the form of vector/axial-vector operators is constrained by the data on B[B→ (K,K*)µ⁺µ⁻] and cannot give rise to an order of magnitude enhancement in B(B_s → µ⁺µ⁻).
- However if NP is in the form of S-P operators then B(B→K^{*}μ⁺μ⁻) does not put any useful constraint on B(B_s→μ⁺μ⁻) and it can be as high as the present upper bound.
- Thus if $B(B_s \rightarrow \mu^+ \mu^-) \ge 10^{-8}$ then it can only be due to S-P operators. [Ashutosh Kumar Alok and S. Uma Sankar, PLB 620, 61 (2005)]
- Hence $B_s \rightarrow \mu^+ \mu^-$ is sensitive to NP models with extended Higgs sector like multi-Higgs doublet models, MSSM etc.

イロト 不同 トイヨト イヨト 二日

A legitimate question to ask at this stage is :

Does new physics scalar/pseudoscalar operators can only enhance $B(B_s \rightarrow \mu^+ \mu^-)$?

< □ > < □ > < □ > = □ - ○ < ○

Effective $\bar{b} \rightarrow \bar{s}\mu^+\mu^-$ Lagrangian

0

$$L(\bar{b} \rightarrow \bar{s}\mu^{+}\mu^{-}) = L_{SM} + L_{SP}$$

$$L_{SM} = \frac{\alpha G_F}{2\sqrt{2}\pi} V_{tb} V_{ts}^{\star} \left\{ C_9 \bar{b} \gamma_{\mu} (1 - \gamma_5) s \,\bar{\mu} \gamma_{\mu} \mu + C_{10} \bar{b} \gamma_{\mu} (1 - \gamma_5) s \,\bar{\mu} \gamma_{\mu} \gamma_5 \mu - 2 \frac{C_7}{q^2} m_b \left(\bar{b} i \sigma_{\mu\nu} q^{\nu} s \right) \bar{\mu} \gamma_{\mu} \mu \right\}$$

$$L_{SP} = \frac{\alpha G_F}{2\sqrt{2}\pi} V_{tb} V_{ts}^{\star} \left\{ R_S \bar{b} (1+\gamma_5) s \,\bar{\mu} \,\mu + R_P \bar{b} (1+\gamma_5) s \,\bar{\mu} \,\gamma_5 \mu \right\}$$

- C₇, C₉ and C₁₀ are SM Wilson coefficients. Their values are: C₇ = -0.310, C₉ = +4.138, C₁₀ = -4.221. [A. J. Buras, M. Munj, PRD52, 186 (1995)]
- q is the sum of the μ^+ and μ^- momenta. R_S and R_P are the new physics couplings.

۲

۲

۵

$$B(B_s \to \mu^+ \mu^-) = a_s[(b_{SM} - b_P)^2 + b_S^2]$$

$$b_{SM} = 2m_{\mu}|C_{10}|, \ b_P = m_{B_s}R_P, \ b_S = m_{B_s}R_S$$

$$a_{s} \equiv \frac{G_{F}^{2} \alpha^{2}}{64\pi^{3}} |V_{ts}^{*} V_{tb}|^{2} \tau_{B_{s}} f_{B_{s}}^{2} m_{B_{s}}$$

Ashutosh Kumar Alok Seminar @ UdeM, Montreal

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ─ 臣 … のへで

 $B_s \rightarrow \mu^+ \mu^-$ can be invisible at the LHC

- The interference between the S-P new physics and SM operators can decrease the branching ratio $B(B_s \rightarrow \mu^+ \mu^-)$ far below its SM prediction.
- In fact it can even vanish, provided the following conditions are satisfied simultaneously:

 $R_S = 0, \ R_P = \frac{2m_\mu |\dot{C}_{10}|}{m_{B_S}} \sim 0.17$

- Hence it may also be possible that LHC fails to find $B_s \rightarrow \mu^+ \mu^-$.
- Therefore the new physics S-P operators can not only lead to a large enhancement in $B(B_s \rightarrow \mu^+ \mu^-)$ but can also cause a large suppression.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

Correlations between $B_s \rightarrow \mu^+ \mu^-$ and $B \rightarrow K \mu^+ \mu^-$

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ─ 臣 … のへで

- One good way to constrain new physics is to study the correlation between the observables which are sensitive to same type of new physics.
- Therefore it is natural to study the impact of large S-P couplings (that may provide an order of magnitude enhancement in $B(B_s \rightarrow \mu^+ \mu^-)$) to the other related decays.
- We study the correlations between S-P new physics contribution to $B_s \rightarrow \mu^+\mu^-$ and $B \rightarrow K\mu^+\mu^-$.

・ロト ・ 同ト ・ ヨト ・ ヨト

The main motivation is to answer the following question:

Can an order of magnitude boost in $B(B_s \rightarrow \mu^+ \mu^-)$ and the experimental data on $B(B \rightarrow K \mu^+ \mu^-)$ can be explained simultaneously by S-P new physics?

(同) (日) (日) 日

- We assume that the S-P new physics will provide an order of magnitude increase in $B(B_s \rightarrow \mu^+ \mu^-)$ so that it is of the order of 10^{-8} .
- In such a situation, the SM amplitude can be neglected in the calculation of branching ratio of $B_s \rightarrow \mu^+ \mu^-$.

▲□ → ▲ 三 → ▲ 三 → ● ▲ ●

$B_s \rightarrow \mu^+ \mu^-$ branching ratio

۲

$B_{SP}(B_s \to \mu^+ \mu^-) = \frac{G_F^2 \alpha^2 m_{B_s}^3 \tau_{B_s}}{64\pi^3} |V_{tb} V_{ts}^*|^2 f_{B_s}^2 \times (R_S^2 + R_P^2)$

$$f_{B_s} = (0.259 \pm 0.027) \text{ GeV}; |V_{ts}| = (40.6 \pm 2.7) \times 10^{-3}$$

$$B_{SP}(B_s \to \mu^+ \mu^-) = (1.43 \pm 0.30) \times 10^{-7} (R_S^2 + R_P^2)$$

• Equating above expression to the present 2σ upper limit on $B(B_s \rightarrow \mu^+\mu^-)$, we get $(R_s^2 + R_P^2) \le 0.70$

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

Allowed $R_S - R_P$ parameter space

• Thus, the allowed region in the $R_S - R_P$ parameter space is the interior of the circle of radius 0.84 centered at the origin.

프 > 프

Matrix elements for $B \rightarrow K \mu^+ \mu^-$

• We now consider $B \rightarrow K\mu^+\mu^-$. The necessary matrix elements are:

$$\langle K(p') | \bar{b} \gamma_{\mu} s | B(p) \rangle = (2p-q)_{\mu} f_{+}(z) + (\frac{1-k^{2}}{z}) q_{\mu} [f_{0}(z) - f_{+}(z)]$$

$$\left\langle K(p') \left| \bar{b}i\sigma_{\mu\nu}q^{\nu}s \right| B(p) \right\rangle = -\left[(2p-q)_{\mu}q^{2} - (m_{B}^{2} - m_{K}^{2})q_{\mu} \right] \frac{f_{T}(z)}{m_{B} + m_{K}}$$

$$\langle K(p') | \bar{b}s | B(p) \rangle = m_B(1-k^2)f_0(z)$$

• $q_{\mu} = (p - p')_{\mu}$ is the four-momentum transferred to the dilepton system. $k = m_K/m_B$ and $z = q^2/m_B^2$.

۲

 $B_{\text{tot}} = \left[5.25 + 0.18(R_S^2 + R_P^2) - 0.13R_P\right] \times (1 \pm 0.20) \times 10^{-7}$

- $B_{\text{tot}} = (1 + \varepsilon)B_{\text{SM}}$.
- ε is the fractional change in the branching ratio due to S-P new physics.
- The maximum negative value that ε can take is -0.005.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

$B(B \rightarrow K \mu^+ \mu^-)$ cannot go below its SM prediction

- S-P new physics cannot lower $B(B \rightarrow K\mu^+\mu^-)$ by more than 0.5% below its SM value.
- Thus, if future experiments were to find $B(B \rightarrow K \mu^+ \mu^-)$ below its SM prediction, then it is almost guaranteed that this deficit is not due to S-P new physics.

(日本) (日本) (日本) 日

Allowed $R_S - R_P$ parameter space

• Equating the expression for $B \rightarrow K \mu^+ \mu^-$ to its experimental value, we get

$$R_{S}^{2} + (R_{P} - 0.36)^{2} = \frac{B_{\exp}}{(0.18 \pm 0.036) \times 10^{-7}} - 29.04$$

• The region in the $R_S - R_P$ plane allowed by the measurement of $B(B_s \rightarrow K\mu^+\mu^-)$ is then an annulus centered at (0, 0.36).

- No tension if there is overlap between B_s → μ⁺μ[−] circle and B → Kμ⁺μ[−] annulus.
- There is tension if there is no overlap.
- "No overlap" will occur if the inner radius of the $B \rightarrow K \mu^+ \mu^-$ annulus is larger than the $B_s \rightarrow \mu^+ \mu^-$ circle.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ●

Tension between $B(B_s \rightarrow \mu^+ \mu^-)$ and $B(B \rightarrow K \mu^+ \mu^-)$ can be schematically understood with the following figure:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tension between $B(B \rightarrow K \mu^+ \mu^-)$ and $B(B_s \rightarrow \mu^+ \mu^-)$

 If we represent the radius of the leptonic circle by r_ℓ and the inner radius of the semileptonic annulus by r_{in}, then

 $r_{in} - r_{\ell} > 0.36$

would imply that the regions allowed by the two branching ratios do not overlap.

- Given the current value of $r_l = 0.84$, we require $0 < r_{in} < 1.2$ for an overlap.
- With present experimental and theoretical errors, $r_{in} = 0$.
- For the tension to be manifest in future experiments, the reduction of errors in B_{exp} and B_{SM} is the most crucial.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

Tension between $B(B \rightarrow K \mu^+ \mu^-)$ and $B(B_s \rightarrow \mu^+ \mu^-)$

- The present upper bound on $B(B_s \rightarrow \mu^+ \mu^-)$, restricts the maximum value of ε to be 0.025.
- Hence the S-P new physics cannot enhance $B(B \rightarrow K \mu^+ \mu^-)$ by more than $\sim 3\%$ above its SM value.
- Thus the allowed values of $B(B \rightarrow K \mu^+ \mu^-)$ are restricted within a narrow range around its SM prediction.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

Forward-backward asymmetry in $B \rightarrow K \mu^+ \mu^-$

Ashutosh Kumar Alok Seminar @ UdeM, Montreal

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ─ 臣 … のへで

- Apart from the branching ratios of the purely leptonic and semi-leptonic decays, there are other observables which are sensitive to the S-P new physics contribution to b→sµ⁺µ⁻ transitions.
- These are forward-backward (FB) asymmetry A_{FB} of muons in $B \rightarrow K\mu^+\mu^-$ and longitudinal polarization (LP) asymmetry A_{LP} of muons in $B_s \rightarrow \mu^+\mu^-$.
- Both these are predicted to be zero in the SM. Therefore, any nonzero measurement of one of these asymmetries is a signal for new physics.

・ロト ・ 同ト ・ ヨト ・ ヨト

FB asymmetry in $B \rightarrow K \mu^+ \mu^-$

- The FB asymmetry is defined as $A_{FB}(z) = \frac{\int_0^1 d\cos\theta \frac{d^2\Gamma}{dzd\cos\theta} \int_{-1}^0 d\cos\theta \frac{d^2\Gamma}{dzd\cos\theta}}{\int_0^1 d\cos\theta \frac{d^2\Gamma}{dzd\cos\theta} + \int_{-1}^0 d\cos\theta \frac{d^2\Gamma}{dzd\cos\theta}}$
- $z = q^2/m_B^2$, q is the sum of $\mu^- \& \mu^+$ momenta and θ is the angle between the momenta of K meson and μ^- in the dilepton center of mass frame.
- In the SM, FB asymmetry in B → Kµ⁺µ⁻ vanishes because the hadronic current for B → K transition does not have any axial vector contribution.
- This asymmetry can be nonzero in multi-Higgs doublet models and supersymmetric models due to the contributions from the extended Higgs sector.
- Therefore FB asymmetry in B → Kµ⁺µ[−] is expected to serve as an important probe to test the existence of an extended Higgs sector.

FB asymmetry in $B \rightarrow K \mu^+ \mu^-$

 The average (or integrated) FB asymmetry of muons in *B* → *K*µ⁺µ⁻, which is denoted by ⟨*A_{FB}*⟩, has been measured by BaBar and Belle to be

> $\langle A_{FB} \rangle = (0.15^{+0.21}_{-0.23} \pm 0.08)$ (BaBar) $\langle A_{FB} \rangle = (0.10 \pm 0.14 \pm 0.01)$ (Belle)

- These measurements are consistent with zero. But on the other hand, they can be as high as $\sim 40\%$ within 2σ error bars.
- Our aim is to investigate what constraints the recently improved upper bound on B(B_s → μ⁺μ[−]) puts on the possible S-P new physics contribution to A_{FB} and A_{LP}.
- Do S-P operators enhance these observables to sufficiently large values to be measurable in future experiments?

イロト 不得 トイヨト イヨト ニヨー

FB asymmetry in $B \rightarrow K \mu^+ \mu^-$

The calculation of FB asymmetry gives

$$A_{FB}(z) = \frac{2\Gamma_0 a_1(z) \phi \beta_{\mu}^2}{d\Gamma/dz} \left(\frac{m_{\mu}R_S}{m_B}\right)$$

$$\Gamma_{0} = \frac{G_{F}^{2} \alpha^{2}}{2^{9} \pi^{5}} |V_{tb} V_{ts}^{*}|^{2} m_{B}^{5},$$

$$a_{1}(z) = \frac{1}{2} (1 - k^{2}) C_{9} f_{0}(z) f_{+}(z) + (1 - k) C_{7} f_{0}(z) f_{T}(z),$$

$$\phi = 1 + k^{4} + z^{2} - 2(k^{2} + k^{2} z + z),$$

$$\beta_{\mu} = (1 - \frac{4 m_{\mu}^{2}}{z}).$$
(1)

• $d\Gamma/dz$ is the differential decay rate.

- The average FB asymmetry is obtained by integrating the numerator and denominator separately over dilepton invariant mass, which leads to $\langle A_{FB} \rangle = \frac{5.25 \times 10^{-9} R_S}{[5.25 + 0.18(R_s^2 + R_p^2) 0.13R_P] \times 10^{-7}} (1 \pm 0.3)$
- With the present upper bound on $B(B_s \rightarrow \mu^+ \mu^-)$, the maximum value of $\langle A_{FB} \rangle$ is 1.34% at 2σ .
- If $B(B_s \rightarrow \mu^+ \mu^-)$ is bounded to 10^{-8} , the 2σ maximum value of $\langle A_{FB} \rangle$ will be only 0.56%.

<ロ> < 四> < 四> < 코> < 코> < 코> 三 코

• The measurement of an asymmetry $\langle A_{FB} \rangle$ of a decay with the branching ratio \mathscr{B} at $n\sigma$ C.L. with only statistical errors require

$$N \sim \frac{1}{\mathscr{B}} \left(\frac{n}{\langle A_{FB} \rangle} \right)^2$$

number of events.

- For $B \to K\mu^+\mu^-$, if $\langle A_{FB} \rangle$ is 1% at 2 σ C.L., then the required number of events will be as high as 10^{11} !
- Therefore it is very difficult to observe such a low value of FB asymmetry in experiments. Hence FB asymmetry of muons in B → Kµ⁺µ⁻ will play no role in testing S-P new physics.

イロト 不同 トイヨト イヨト 二日

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ─ 臣 … のへで

• The longitudinal polarization asymmetry of muons in $B_s \rightarrow \mu^+ \mu^-$ is defined as

$$A_{LP} = \frac{N_R - N_L}{N_R + N_L}$$

 $N_R(N_L)$ is the number of μ^- emerging with positive (negative) helicity

- The longitudinal polarization asymmetry of muons in *B_s* → μ⁺μ[−] is a clean observable that depends only on S-P new physics operators.
- It vanishes in the SM. It is nonzero if and only if the new physics contribution is in the form of S-P operator.
- Therefore any nonzero measurement of this observable *A_{LP}* will confirm the existence of an extended Higgs sector.

(個) (日) (日) (日)

$$A_{LP} = \frac{2b_{S}(b_{SM} - b_{P})}{(b_{SM} - b_{P})^{2} + b_{S}^{2}}$$

- A_{LP} can be nonzero if and only if $b_S \neq 0$, i.e. for A_{LP} to be nonzero, we must have contribution from S-P operators.
- Within the SM, $b_S \simeq 0$ and hence $A_{LP} \simeq 0$.

• We will determine the allowed values of A_{LP} consistent with the present upper bound on $B(B_s \rightarrow \mu^+ \mu^-)$, and explore the correlation between these two quantities.

(個) (三) (三) (三)

Figure: A_{LP} vs R_s plot for $B(B_s \to \mu^+ \mu^-) = (5.8, 3.0, 1.0) \times 10^{-8}$

 $(A_{LP})_{max}$ for present upper bound on $B(B_s \rightarrow \mu^+ \mu^-)$ is 100%. $B(B_s \rightarrow \mu^+ \mu^-)$ will be unable to put any constraint on A_{LP} even if it is as low as 10^{-8} .

Figure: A_{LP} vs R_s plot for $B(B_s \to \mu^+ \mu^-) = (5.5, 3.5, 1.5) \times 10^{-9}$

 A_{LP} can be 100% even if $B(B_s \rightarrow \mu^+ \mu^-)$ is close to its SM prediction !!

- The measurement of $B(B_s \rightarrow \mu^+ \mu^-)$ will only give the allowed range for the values of the S-P couplings R_s and R_P .
- However the simultaneous determination of $B(B_s \rightarrow \mu^+ \mu^-)$ and A_{LP} will allow the determination of new physics scalar coupling R_s and this in turn will enable us to determine the new physics pseudoscalar coupling R_P .

< 回 ト < 三 ト < 三 ト -

- We now consider two exciting experimental possibilities, all of which can be accounted for with S-P new physics.
- $B(B_s \rightarrow \mu^+ \mu^-)$ is consistent with SM but $A_{LP} \neq 0$.
- Both $B(B_s \rightarrow \mu^+ \mu^-)$ and A_{LP} are consistent with the SM.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

$B(B_s \rightarrow \mu^+ \mu^-)$ is consistent with SM but $A_{LP} \neq 0$

- It is possible to have a non-zero value of A_{LP} even if $B(B_s \rightarrow \mu^+ \mu^-)$ is equal to its SM prediction.
- $B_s \rightarrow \mu^+ \mu^-$ branching ratio is $B(B_s \rightarrow \mu^+ \mu^-) = a_s[(b_{SM} - b_P)^2 + b_S^2]$. • If $B(B_s \rightarrow \mu^+ \mu^-)$ is equal to its SM prediction, then $a_s[(b_{SM} - b_P)^2 + b_S^2] = a_s b_{SM}^2$.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

$B(B_s \rightarrow \mu^+ \mu^-)$ is consistent with SM but $A_{LP} \neq 0$

• This gives us a circle in $b_S - b_P$ plane with center at $(0, b_{SM})$:

$$(b_P - b_{SM})^2 + b_S^2 = b_{SM}^2$$

- This circle passes through the origin ($b_S = b_P = 0$), which corresponds to the SM.
- However, in general the points on the circle have nonzero b_S , and hence imply nonvanishing A_{LP} .
- Therefore it is possible to have a nonzero value of A_{LP} even if $B(B_s \rightarrow \mu^+ \mu^-)$ is equal to its SM prediction.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

Both $B(B_s \rightarrow \mu^+ \mu^-)$ and A_{LP} are consistent with the SM

- Lepton polarization asymmetry vanishes when either $b_S = 0$ or $b_P = b_{SM}$.
- Thus there exists the interesting possibility of nontrivial S-P new physics even when both $B(B_s \rightarrow \mu^+ \mu^-)$ and A_{LP} are consistent with the SM.
- This occurs when:

 $b_S = 0, b_P = 2b_{SM}$. $b_S = \pm b_{SM}, b_P = b_{SM}$.

 Therefore, the absence of S-P new physics is not guaranteed simply by the consistency of these observables with the SM; more channels need to be examined to rule out this possibility completely.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

- We consider new physics in the form of S-P operators.
- We show that S-P new physics cannot decrease the branching ratio of $B \rightarrow K \mu^+ \mu^-$ below its SM prediction.
- The S-P new physics operators are strongly constrained by the upper bound on $B(B_s \rightarrow \mu^+ \mu^-)$, and in turn restrict the allowed values of $B(B \rightarrow K \mu^+ \mu^-)$ to within a narrow range around its SM prediction.
- Future precise measurements of these two branching ratios may not only give an evidence for new physics, but also reveal the nature of its Lorentz structure.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Apart from $B(B_s \rightarrow \mu^+ \mu^-)$ and $B(B \rightarrow K \mu^+ \mu^-)$, observables such as FB asymmetry of muons in $B \rightarrow K \mu^+ \mu^-$ and LP asymmetry of muons in $B_s \rightarrow \mu^+ \mu^$ are also sensitive to S-P operators.
- $B(B_s \rightarrow \mu^+ \mu^-)$ puts very stringent constraint on S-P new physics contribution to $\langle A_{FB} \rangle$ and restricts its value to be less than $\sim 1\%$.
- Thus the present upper bound on B(B_s → µ⁺ µ⁻) makes searching for S-P new physics through ⟨A_{FB}⟩ a futile exercise.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

Conclusions

- *A*_{*LP*} is sensitive only to S-P operators and hence its nonzero value will give direct evidence for a non-standard Higgs sector.
- The present upper bound on $B(B_s \rightarrow \mu^+ \mu^-)$ does not put any constraint on A_{LP} . Indeed, A_{LP} can be 100% even if $B(B_s \rightarrow \mu^+ \mu^-)$ is close to its SM prediction.
- A simultaneous determination of B(B_s → µ⁺µ[−]) and A_{LP} will enable us to separate the new physics scalar and pseudoscalar contributions.
- Consistency of both $B(B_s \rightarrow \mu^+ \mu^-)$ and A_{LP} with SM cannot rule out S-P new physics. However tension between $B(B_s \rightarrow \mu^+ \mu^-)$ and $B(B \rightarrow K \mu^+ \mu^-)$ will rule out new physics in the form of only S-P operators.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

Seminar @ UdeM, Montreal

Diagrams contributing to the $b \rightarrow sl^+l^-$ in extended Higgs sector

Ashutosh Kumar Alok

Seminar @ UdeM, Montreal

$B \rightarrow K \mu^+ \mu^-$ decay amplitude

The decay amplitude for $B(p) \rightarrow K(p')\mu^+(p_+)\mu^-(p_-)$ is given by

$$M(B \to K\mu^{+}\mu^{-}) = \frac{\alpha G_{F}}{2\sqrt{2}\pi} V_{tb} V_{ts}^{\star} \times \left[\left\langle K(p') \left| \bar{b} \gamma_{\mu} s \right| B(p) \right\rangle \times \left\{ C_{9}^{\text{eff}} \bar{u}(p_{-}) \gamma_{\mu} v(p_{+}) + C_{10} \bar{u}(p_{-}) \gamma_{\mu} \gamma_{5} v(p_{+}) \right\} - \frac{2C_{7}^{\text{eff}} m_{b}}{q^{2}} \left\langle K(p') \left| \bar{b} i \sigma_{\mu\nu} q^{\nu} s \right| B(p) \right\rangle \bar{u}(p_{-}) \gamma_{\mu} v(p_{+}) + \left\langle K(p') \left| \bar{b} s \right| B(p) \right\rangle \times \left\{ R_{S} \bar{u}(p_{-}) v(p_{+}) + R_{P} \bar{u}(p_{-}) \gamma_{5} v(p_{+}) \right\} \right], \quad (2)$$

where $q_{\mu} = (p - p')_{\mu} = (p_+ + p_-)_{\mu}$.

<ロト < 回 ト < 亘 ト < 亘 ト - 亘 - の < ()

$B \rightarrow K \mu^+ \mu^-$ double differential decay width

The double differential decay width can be calculated as

$$\frac{d^{2}\Gamma}{dzdcos\theta} = \frac{G_{F}^{2}\alpha^{2}}{2^{9}\pi^{5}} |V_{tb}V_{ts}^{*}|^{2} m_{B}^{5} \phi^{1/2} \beta_{\mu} \\
\times \left[\left(|A|^{2} \beta_{\mu}^{2} + |B|^{2} \right) z \\
+ \frac{1}{4} \phi \left(|C|^{2} + |D|^{2} \right) (1 - \beta_{\mu}^{2} \cos^{2} \theta) \\
+ 2\hat{m}_{\mu} (1 - k^{2} + z) Re(BC^{*}) + 4\hat{m}_{\mu}^{2} |C|^{2} \\
+ 2\hat{m}_{\mu} \phi^{\frac{1}{2}} \beta_{\mu} Re(AD^{*}) \cos \theta \right]$$
(3)

 The FB asymmetry arises from the cos θ term in the above equation.

同ト イヨト イヨト ヨー つくや

$B \rightarrow K \mu^+ \mu^-$ double differential decay width

 The definitions used in the expression of double differential decay rate are:

$$A \equiv \frac{1}{2}(1-k^{2})f_{0}(z)R_{S},$$

$$B \equiv -\hat{m}_{\mu}C_{10}\left\{f_{+}(z) - \frac{1-k^{2}}{z}(f_{0}(z) - f_{+}(z))\right\}$$

$$+\frac{1}{2}(1-k^{2})f_{0}(z)R_{P},$$

$$C \equiv C_{10}f_{+}(z),$$

$$D \equiv C_{9}^{eff}f_{+}(z) + 2C_{7}^{eff}\frac{f_{T}(z)}{1+k},$$

$$\phi \equiv 1+k^{4}+z^{2}-2(k^{2}+k^{2}z+z),$$

$$\beta_{\mu} \equiv (1-\frac{4\hat{m}_{\mu}^{2}}{z}).$$
(4)

• $z = q^2/m_B^2$, $k = m_K/m_B$, $\hat{m}_{\mu} = m_{\mu}/m_B$ and θ is the angle between the momenta of K meson and μ^{\pm} in the dilection second s

$B \rightarrow K \mu^+ \mu^-$ double differential decay width

• The kinematical variables are bounded as

$$\begin{split} -1 &\leq \cos\theta \leq 1 \;, \\ 4 \hat{m}_{\mu}^2 &\leq z \leq (1-k)^2 \;. \end{split}$$

< □ > < □ > < □ > = □ - ○ < ○

Form factors

The form factors $f_{+,0,T}$ can be calculated in the light cone QCD approach. Their q^2 dependence is given by

$$f(z) = f(0) \exp(c_1 z + c_2 z^2 + c_3 z^3), \qquad (5)$$

where the parameters $f(0), c_1, c_2$ and c_3 for each form factor are given below:

	f(0)	c_1	<i>c</i> ₂	С3
f_+	$0.319\substack{+0.052\\-0.041}$	1.465	0.372	0.782
f_0	$0.319\substack{+0.052\\-0.041}$	0.633	-0.095	0.591
f_T	$0.355\substack{+0.016\\-0.055}$	1.478	0.373	0.700

Table: Form factors for the $B \rightarrow K$ transition.

▲圖▶ ▲理▶ ▲理▶ ---

э

The decay amplitude for $B_s \rightarrow \mu^+ \mu^-$ is given by $M(B_s \rightarrow \mu^+ \mu^-) = \frac{\alpha G_F}{2\sqrt{2\pi}} V_{tb} V_{ts}^{\star} \langle 0 | \bar{s} \gamma_5 b | B_s \rangle$ $\times \left[R_S \bar{u}(p_\mu) v(p_{\bar{\mu}}) + R_P \bar{u}(p_\mu) \gamma_5 v(p_{\bar{\mu}}) \right] .$

On substituting

$$egin{aligned} &\langle 0 \left| ar{s} \gamma_5 b
ight| B_s
ight
angle &= -i rac{f_{B_s} m_{B_s}^2}{m_b + m_s} ext{, we get} \ &M\left(B_s
ightarrow \mu^+ \mu^-
ight) &= -i rac{lpha G_F}{2\sqrt{2}\pi} V_{tb} V_{ts}^\star rac{f_{B_s} m_{B_s}^2}{m_b + m_s} \ & imes \left[R_S ar{u}(p_\mu) v(p_{ar{\mu}}) + R_P ar{u}(p_\mu) \gamma_5 v(p_{ar{\mu}})
ight] ext{,} \end{aligned}$$

where m_b and m_s are the masses of bottom and strange quark, respectively.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > <

- In the rest frame of μ^+ , we can define only one direction \overrightarrow{p}_- , the three momentum of μ^- .
- The unit longitudinal polarization 4-vectors along that direction are

$$ar{s}^{\mu}_{\mu^{\pm}} = (0, \ \hat{e}^{\pm}_{L}) = \left(0, \ \pm rac{\overrightarrow{p}_{-}}{|\overrightarrow{p}_{-}|}
ight).$$

- Transformation of unit vectors from the rest frame of μ^+ to the center of mass frame of leptons (which is also the rest frame of B_s meson) can be accomplished by the Lorentz boost.
- After the boost, we get

$$s^{\mu}_{\mu^{\pm}} = \left(\frac{|\overrightarrow{p}_{-}|}{m_{\mu}}, \pm \frac{E_{\mu}\overrightarrow{p}_{-}}{m_{\mu}|\overrightarrow{p}_{-}|}\right)$$
, where E_{μ} is the muon

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

energy.

• The longitudinal polarization asymmetry of muons in $B_s \rightarrow \mu^+ \mu^-$ is defined as

$$A_{LP}^{\pm} \;=\; \frac{\Gamma(\hat{e}_L^{\pm}) \,-\, \Gamma(-\hat{e}_L^{\pm})}{\Gamma(\hat{e}_L^{\pm}) \,+\, \Gamma(-\hat{e}_L^{\pm})} \;.$$

• Eliminating b_{SM} and b_P from A_{LP} using $B(B_s \rightarrow \mu^+ \mu^-)$ expression, we get

$$A_{LP} = \pm \frac{2a_s b_S \sqrt{\frac{B(B_s \to \mu^+ \, \mu^-)}{a_s} - b_S^2}}{B(B_s \to \mu^+ \, \mu^-)}$$

• We now explore the correlation between A_{LP} and $B(B_s \rightarrow \mu^+ \mu^-)$.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure: Plot between $|A_{LP}|$ and $B(B_s \rightarrow \mu^+ \mu^-)$ for different R_S values, when $B(B_s \rightarrow \mu^+ \mu^-) \leq 10^{-8}$. The vertical shaded band corresponds to 1σ theoretical prediction within the SM.

$$\begin{split} \langle K^*(p_{K^*}) \left| \bar{s} \gamma_{\mu} b \right| B(p_B) \rangle &= i \varepsilon_{\mu \vartheta \lambda \sigma} \varepsilon^{\nu}(p_{K^*}) (p_B + p_{K^*})^{\lambda} \\ &\times (p_B - p_{K^*})^{\sigma} V(q^2) \,, \\ \langle K^*(p_{K^*}) \left| \bar{s} \gamma_5 \gamma_{\mu} b \right| B(p_B) \rangle &= \varepsilon_{\mu} (p_{K^*}) (m_B^2 - m_{K^*}^2) A_1(q^2) \\ &- (\varepsilon . q) (p_B + p_{K^*})_{\mu} A_2(q^2) \,, \\ \langle K^* \left| \bar{s} \gamma_5 b \right| B \rangle &= -i \left(\frac{2m_{K^*}}{m_b - m_s} \right) A_0(q^2) (q \cdot \varepsilon) \,. \end{split}$$
where $q = p_{l^+} + p_{l^-}$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ▲ 日 ト ● ④ ヘ ()・

•

$$L_{SP} = \frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^{\star} \left\{ \tilde{R}_S \left(\bar{b} P_R s \right) \bar{\mu} \mu + \tilde{R}_P \left(\bar{b} P_R s \right) \bar{\mu} \gamma_5 \mu \right\} \,.$$

R̃_S and *R̃_P* are the scalar and pseudoscalar new physics couplings respectively, which in general can be complex.

•
$$\tilde{R}_S \equiv R_S e^{i\delta_S}, \tilde{R}_P \equiv R_P e^{i\delta_P}$$

• Here the phases are restricted to be $0 \le (\delta_S, \delta_P) < \pi$, whereas R_S and R_P can take positive as well as negative values.

• When \tilde{R}_S and \tilde{R}_P are complex, the constraint becomes:

$$R_{S}^{2} + (R_{P} - 0.36\cos\delta_{P})^{2} = \frac{B_{\exp} \times 10^{-7}}{(0.18 \pm 0.036)} - 29.17 + (0.36\cos\delta_{P})^{2}$$

- For nonzero δ_P , the center of the semileptonic annulus shifts along the R_P axis, while the radius of the annuli are almost unchanged.
- If the allowed regions do not overlap for $\delta_P = 0$, then they will not overlap for any value of δ_P .
- Hence the tension between B(B_s → μ⁺μ⁻) and B(B → Kμ⁺μ⁻) persists, and gives rise to the same constraints on the semileptonic branching ratio even if the S-P NP couplings are complex.

- In writing the effective S-P new physics Lagrangian L_{SP} , we considered only the quark bilinear $\bar{b}P_{RS}$.
- Lorentz Invariance of the Lagrangian also allows the bilinear $\bar{b}P_{L^S}$ in general.
- We take this generalization into account by replacing $\bar{b}P_Rs$ by $\bar{b}(\alpha P_L + P_R)s$, where α is the strength of the $\bar{b}P_Ls$ bilinear relative to that of $\bar{b}P_Rs$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Thus the general expressions for the branching ratios of the two processes become: $B(B_s \rightarrow \mu^+\mu^-) = (1-\alpha)^2 (R_s^2 + R_P^2) (1.43 \pm 0.30) \times 10^{-7}$.
- $B(B \to K\mu^+\mu^-) =$ $\left[5.25 + 0.18 (1 + \alpha)^2 (R_S^2 + R_P^2) - 0.13 (1 + \alpha) R_P\right] (1 \pm 0.20) \times 10^{-7}$.
- For $\alpha = 0$, above equations reduce to the previous equations.

(個) (日) (日) (日)

Figure shows ε_{max} (maximum fractional deviation of $B(B \to K \mu^+ \mu^-)$ from SM value, as a function of 2σ upper bound on $B(B_s \to \mu^+ \mu^-)$.

- The minimum allowed value of ε is almost independent of the value of α and the leptonic upper bound, and is approximately -0.005.
- For a class of models with multiple Higgs doublets, $\alpha = 0$, ε_{max} is restricted to +0.025, as seen earlier.
- With the additional freedom generated by the extra parameter α, this severe constraint is relaxed.
- For example, for the models with $\alpha \approx 1.5$, the value of ε may be as large as +0.7.

くぼう くほう くほう

- When α < 0, the expression for B(B_s → μ⁺μ⁻) indicates that the constraints on R_s and R_P should become more restrictive. As a result, ε is constrained to be even smaller.
- ε_{\max} for negative α are very close to zero, and the corresponding ε_{\max} curves are almost overlapping.
- This implies that for negative α , any significant deviation of $B(B \rightarrow K \mu^+ \mu^-)$ from SM is impossible with S-P NP.

・ロト ・ 同ト ・ ヨト ・ ヨト

- For the measurements of B(B_s → μ⁺μ⁻) and B(B→Kμ⁺μ⁻) to be compatible with S-P NP, the lower bound on B(B→Kμ⁺μ⁻) should be less than (1+ε_{max})B_{SM}.
- Thus, the upper bound on B(B_s → μ⁺μ⁻) and the lower bound on B(B → Kμ⁺μ⁻) allow us to constrain the value of α in a class of models that involve new physics scalar/pseudoscalar couplings.

<ロト < 回ト < 回ト < 回ト < 回ト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For the special case $\alpha = 1$, the new physics has no contribution to $B_s \rightarrow \mu^+ \mu^-$ because the quark bilinear is pure scalar and the corresponding pseudoscalar meson to vacuum transition matrix element is zero.
- In such cases, B(B_s → µ⁺µ⁻) is entirely due to the SM, and provides no constraints on B(B → Kµ⁺µ⁻).

(個) (日) (日) (日)