Results for muon decay parameters from *TWIST*

Glen Marshall, for the *TWIST* Collaboration Université de Montréal, April 12, 2010

TWIST Participants

TRIUMF Ryan Bayes *† Yuri Davydov Wayne Faszer Makoto Fujiwara **David Gill Alexander Grossheim Peter Gumplinger** Anthony Hillairet *† **Robert Henderson Jingliang Hu** John A. Macdonald § Glen Marshall **Dick Mischke** Mina Nozar Konstantin Olchanski Art Olin † **Robert Openshaw** Jean-Michel Poutissou Renée Poutissou Grant Sheffer **Bill Shin** ^{±±}

Alberta Andrei Gaponenko ** Robert MacDonald ** Maher Quraan Nate Rodning §

British Columbia James Bueno * Mike Hasinoff Blair Jamieson **

Montréal Pierre Depommier

Regina Ted Mathie Roman Tacik Kurchatov Institute Vladimir Selivanov

Texas A&M Carl Gagliardi Jim Musser ** Bob Tribble

Valparaiso Don Koetke Shirvel Stanislaus

* Graduate student
** Graduated
† also U Vic
‡‡ also Saskatchewan
§ deceased

Outline

Description of muon decay

• coupling constants, decay parameters

The experiment: how muon decay is measured

 \odot beam and detectors

Data and analysis techniques

 \odot simulation and blind analysis

Evaluation of systematic uncertainties

⊙ general approach and specific examples

Presentation and interpretation of results

 ● new results, comparisons with previous results, validity check, and consequences

Description of Muon Decay

- Muons (μ⁻, μ⁺): 0
 - are leptons.
 - are not affected by strong interactions (*great* for weak interaction tests!)

Mass: \bigcirc

- 105.658369(9) MeV/c² \odot
- $200 \times m_e$, $1/9 \times m_p$ \odot

Lifetime: \bigcirc

Ο 2.197019(21) μs

Decay: 0

- $E_{e}^{\max} = 52.8 \text{ MeV}$

- \odot (3.4 \pm 0.4)imes 10⁻⁵ $\mu \rightarrow eee \bar{
 u}_e
 u_\mu$

Spin: 0

- $) \frac{1}{2}$
- easily produced with high polarization.
- ⊙ $a_{\mu} \equiv (g_{\mu} 2)/2 = 116592089(63) \times 10^{-10} (0.54 \text{ ppm})$

Muon decay made simple

- Lorentz invariant
- Iocal

⊙ lepton-number-conserving

 Allows scalar, vector, or tensor; left or right; or combinations.

Matrix elements

Description of Fetscher and Gerber (see PDG Review):

$$M \;=\; rac{4G_F}{\sqrt{2}} \sum_{\substack{\gamma=S,V,T \arepsilon,\mu=R,L}} g_{arepsilon\mu}^\gamma ig\langle ar{e}_arepsilon \, |\Gamma^\gamma| \, (
u_e)_n
angle \, \langle (ar{
u}_\mu)_m \, |\Gamma_\gamma| \, \mu_\mu
angle$$

- ◎ Includes includes scalar, vector, and tensor ($\Gamma^{S}, \Gamma^{V}, \Gamma^{T}$)
 interactions among left- and right-handed μ, e.
- Probability for decay of μ -handed muon to ϵ -handed
 electron is easily expressed:

$$Q_{arepsilon\mu}=rac{1}{4}|g^S_{arepsilon\mu}|^2+|g^V_{arepsilon\mu}|^2+3(1-\delta_{arepsilon\mu})|g^T_{arepsilon\mu}|^2$$

Coupling constants

© Coupling constants $g_{\epsilon\mu}^{\gamma}$ can be related to handedness, *e.g.*, total muon right-handed coupling:

$$egin{array}{rcl} Q^{\mu}_{R} &\equiv & Q_{RR} + Q_{LR} \ &= & rac{1}{4} |oldsymbol{g}^{S}_{LR}|^2 + rac{1}{4} |oldsymbol{g}^{S}_{RR}|^2 + |oldsymbol{g}^{V}_{LR}|^2 + |oldsymbol{g}^{V}_{RR}|^2 + 3|oldsymbol{g}^{T}_{LR}|^2 \end{array}$$

◎ Global analysis from PDG2004 for pre-TWIST results

⊙ in parentheses, Gagliardi *et al.*, PRD **72**, 073002 (2005)

 $egin{aligned} |g_{RR}^{S}| &< 0.066(0.067) \ |g_{LR}^{S}| &< 0.125(0.088) \ |g_{RL}^{S}| &< 0.424(0.417) \ |g_{LL}^{S}| &< 0.550(0.550) \end{aligned}$

 $egin{aligned} |g_{RR}^V| &< 0.033(0.034) \ |g_{LR}^V| &< 0.060(0.036) \ |g_{RL}^V| &< 0.110(0.104) \ |g_{LL}^V| &> 0.960(0.960) \end{aligned}$

 $egin{aligned} |g_{RR}^{T}| &\equiv 0 \ |g_{LR}^{T}| &< 0.036(0.025) \ |g_{RL}^{T}| &< 0.122(0.104) \ |g_{LL}^{T}| &\equiv 0 \end{aligned}$

Muon decay parameters and coupling constants

$$\begin{split} \rho &= \frac{3}{4} - \frac{3}{4} [\left|g_{RL}^{V}\right|^{2} + \left|g_{LR}^{V}\right|^{2} + 2\left|g_{RL}^{T}\right|^{2} + 2\left|g_{LR}^{T}\right|^{2} \\ &+ \mathbb{R}e\left(g_{RL}^{S}g_{RL}^{T*} + g_{LR}^{S}g_{LR}^{T*}\right)\right] \\ \eta &= \frac{1}{2}\mathbb{R}e[g_{RR}^{V}g_{LL}^{S*} + g_{LL}^{V}g_{RR}^{S*} + g_{RL}^{V}(g_{LR}^{S*} + 6g_{LR}^{T*}) + g_{LR}^{V}(g_{RL}^{S*} + 6g_{RL}^{T*})] \\ \xi &= 1 - \frac{1}{2}\left|g_{LR}^{S}\right|^{2} - \frac{1}{2}\left|g_{RR}^{S}\right|^{2} - 4\left|g_{RL}^{V}\right|^{2} + 2\left|g_{LR}^{V}\right|^{2} - 2\left|g_{RR}^{V}\right|^{2} \\ &+ 2\left|g_{LR}^{T}\right|^{2} - 8\left|g_{RL}^{T}\right|^{2} + 4\mathbb{R}e(g_{LR}^{S}g_{LR}^{T*} - g_{RL}^{S}g_{RL}^{T*}) \\ \xi \delta &= \frac{3}{4} - \frac{3}{8}\left|g_{RR}^{S}\right|^{2} - \frac{3}{8}\left|g_{LR}^{S}\right|^{2} - \frac{3}{2}\left|g_{RR}^{V}\right|^{2} - \frac{3}{4}\left|g_{RL}^{V}\right|^{2} - \frac{3}{4}\left|g_{LR}^{V}\right|^{2} \\ &- \frac{3}{2}\left|g_{RL}^{T}\right|^{2} - 3\left|g_{LR}^{T}\right|^{2} + \frac{3}{4}\mathbb{R}e(g_{LR}^{S}g_{LR}^{T*} - g_{RL}^{S}g_{RL}^{T*}) \end{split}$$

Decay parameter description

(a) Muon decay ("Michel") parameters ρ , η , $\mathcal{P}_{\mu}\xi$, δ **(a)** muon differential decay rate *vs.* energy and angle: $\frac{d^{2}\Gamma}{dx \ d \cos \theta} = \frac{1}{4} m_{\mu} W_{\mu e}^{4} G_{F}^{2} \sqrt{x^{2} - x_{0}^{2}} \cdot$ $\{\mathcal{F}_{IS}(x, \rho, \eta) + \mathcal{P}_{\mu} \cos \theta \cdot \mathcal{F}_{AS}(x, \xi, \delta)\} + R.C.$

• where

Louis Michel

Decay spectrum shape, graphically

•Full $\mathcal{O}(\alpha)$ radiative corrections with exact electron mass dependence. •Leading and next-to-leading logarithmic terms of $\mathcal{O}(\alpha^2 L^2)$ and $\mathcal{O}(\alpha^2 L)$, L=In((m_µ/m_e)²) •Leading logarithmic terms of $\mathcal{O}(\alpha^3 L^3)$. •Ignores $\mathcal{O}(\alpha^2 L^0)$ (2007).

U. de Montréal, April 12, 2010

K. Melnikov, J. High Energy Phys. (09):014 (2007)
A. Arbuzov, J. High Energy Phys. 2003(03):063 (2003)
A. Arbuzov et al., Phys. Rev. D66, 93003 (2002)
A. Arbuzov et al., Phys. Rev. D65, 113006 (2002)

Pre-*TWIST* **decay parameters**

From the Review of Particle Physics (SM values) And Section 2.1

- $\mathcal{P}_{\mu}\xi = 1.0027 \pm 0.0079 \pm 0.0030$ (Beltrami *et al.*, 1987) (1.00)
- $\mathcal{P}_{\mu}(\xi \delta / \rho) > 0.99682 \ (90\% CL) \ (Jodidio$ *et al.*, 1986) (1.00)
- $\eta = -0.007 \pm 0.013$ (Burkard *et al.*, 1985)

The goal of \mathcal{TWIST} is to find any new physics which may become apparent by improving the precision of each of ρ , δ , and $\mathcal{P}_{\mu}\xi$ by one order of magnitude compared to prior experimental results.

(0.00)

Early history of μ decay

SICAL REVIEW

VOLUME 75, NUMBER 8

APRIL 15, 1949

The Absorption of Charged Particles from the 2.2-usec. Meson Decay

E. P. HINCKS AND B. PONTECORVO National Research Council of Canada, Chalk River Laboratory, Chalk River, Ontario, Canada July 26, 1948

T HE energy spectrum of the charged particles (commonly assumed to be electrons) emitted in the 2.2- μ sec. meson decay is still unknown. Conversi and Piccioni¹ in 1944 deduced from the relative numbers of

2) that less than 0.03 count per hour can be due to radiation from 25-Mev electrons in our arrangement. Consequently, it may be seen from Table I that at least a substantial fraction of the electrons must have a range greater than 15 g/cm² of carbon. Therefore, we conclude that there are decay electrons having energies greater than 25 Mev and therefore that the 2-particle decay process (Eq. (1)), with a *unique* energy of about 25 Mev for the decay electron, is incompatible with our results.

We observe, however, that a *maximum* energy of about 50 Mev for the decay electrons would be consistent with the data of Table I.

On the Range of the Electrons in Meson Decay

J. STEINBERGER* The Institute for Nuclear Study, University of Chicago, Chicago, Illinois (Received January 10, 1949)

An experiment has been carried out both at Chicago and on Mt. Evans, Colorado, to determine the absorption of the electrons emitted in the decay of cosmic-ray mesons. Approximately 8000 counts have been obtained, using a hydrocarbon as the absorbing material. These data are used to deduce some features of the energy spectrum of the decay electrons. The resolution of the apparatus is calculated, taking the geometry, scattering, and radiation into account. The results indicate that the spectrum is either continuous, from 0 to about 55 Mev with an average energy \sim 32 Mev or consists of three or more discrete energies. No variation of the lifetime with the thickness of the absorber is observed. The experiment, therefore, offers some evidence in favor of the hypothesis that the μ -meson disintegrates into 3 light particles.

FIG. 9. The decay electron spectrum in this figure has been calculated to give as good a fit as possible with the data, at the same time excluding energies greater than 55 Mev. The limits of error of this spectrum are unknown, but large,

The TRIUMF Weak Interaction Symmetry Test

- Uses highly polarized
 μ⁺ beam from M13.
- Stops μ⁺ in a very symmetric detector.
- Tracks e⁺ through uniform, well-known field.
- Completed data taking in 2007.
- Extracts decay parameters by comparison to detailed GEANT3 simulation.

Muon production and transport

Surface muon beam

- Pions decaying at rest produce muon beams with $\mathcal{P}_{\mu} > 99\%$.
- Depolarization must be controlled using small beams near kinematic edge, 29.8 MeV/c.
- 𝔅 Use ~4×10³ μ⁺ s⁻¹.
- Muon total range at density ~1 only about 1.5 mm!

TEC beam characterization

- Solution Need to know x, y, θ_x , θ_y , and correlations, for incident muon beam.
- Measure in two modules of low pressure (80 mbar) time expansion chambers (TEC).
- "Correct" for multiple scattering (\sim 20 mrad rms).
- Simulate by sampling corrected distributions.
- Decay parameters measured with TEC removed; multiple scattering reduces polarization.
 - J. Hu et al., NIM A566 (2006) 563-574

Detector array

R. Henderson et al., Nucl. Instr. and Meth. A548 (2005) 306-335 U. de Montréal, April 12, 2010 17

Detector precision

- Longitudinal precision of wire planes: 30 µm over 1 m detector length
 → 3 × 10⁻⁵
- Transverse precision of wire spacing: 3.3 µm rms for 4 mm cell size
 → 8 × 10⁻⁴
- Low mass
- Solution Simple State Sta
- ♥ Field map precision:
 → 5 × 10⁻⁵
- Slow control monitor/control (e.g., dipole fields, temperature, atmospheric pressure)

Cradle with detector array

Data and Analysis

Data obtained in 2006 (Ag target) and 2007 (Al target)

- \odot total events: 11×10^9
- \odot after quality checks, cuts, and selections: 0.55×10^9
- roughly divided between Ag and Al
- Simulation: ~ \times 2.7 compared to data statistics

• custom GEANT3 contains detailed physical processes
• produces "data" exactly as experiment does, plus MC "truth"

Other systematic test data and many simulation systematics tests

 O different beam situations, stopping distributions, physics processes in simulation

Treatment of data

Event reconstruction

• event identification by event topology

• primarily using PC information (time resolution)

 \odot two-stage track reconstruction

- pattern recognition; hits approximate a helix
- high-precision helix fit using drift times

Section

- ⊙ trigger information (muon TOF)
- \odot event topology selection (event type cut)
- ⊙ muon stop selection (last plane hit, radius, PC5/6 energy)
- ⊙ track selection: charge, direction, vertex at target, decay time

Analysis: fit to simulation (MCfit)

- fit data to normalized GEANT3 \bigcirc simulation distribution is linear in $\mathcal{P}_{\mu}\xi$, $\mathcal{P}_{\mu}\xi\delta$, ρ , η
- \odot Use η measured by other means, rather than fit it (3 parameters in fit)

U. de Montréal, April 12, 2010

50

Blind analysis

Systematic estimation

Systematic uncertainties

Intermediate *TWIST* results have been published based on 2004 data: B. Jamieson et al., Phys. Rev. D 74 (2006) 072007 R.P. MacDonald et al., Phys. Rev. D 78 (2008) 032010

Improved ρ and δ uncertainties

Positron interactions

"Broken tracks" analysis: $2e^+$, $1e^- \equiv \delta$ -electron $2e^+ \equiv$ Bremsstrahlung

Agreement of data and sim: δ -electrons < 1% Bremsstrahlung differs by 2.4%

U. de Montréal, April 12, 2010

Systematics via exaggeration

Bremsstrahlung example

- exaggerate: adjust (with care!) the rate in the simulation
- compare simulated runs, exaggerated vs. normal, to assess effects of increase on decay parameters
- compare normal simulation with data to assess difference in brem
- evaluate difference in terms of decay parameter uncertainties

Momentum calibration

-0.896 < cosθ < -0.848 arb. units 2000 data 1500 simulation 1000 500 0 52.452.6 52.8 53.0 53.2 53.4 momentum (MeV/c)

- Use kinematic edge at 52.8 MeV/c: energy loss and planar geometry lead to $\cos\theta$ dependence.

- Difference of ${\sim}10$ keV/c prior to calibration.

- Calibration at edge provides no guidance on how to propagate the difference to lower momenta in the spectrum.

Momentum calibration

Chamber response

A. Grossheim et al., submitted to NIM

Space-time relations (STRs) are calibrated with data for data analysis, or simulation for MC analysis, to include common biases.

Isochrones from calibrated STRs can account for detector plane geometry differences in data and biases in helix fitting.

Improved $\mathcal{P}_{\mu}\xi$ uncertainties

Uncertainties	$\mathcal{P}_{\mu}\xi$ ($ imes$ 10 ⁻⁴)
Depolarization in fringe field	+15.8, -4.0
Depolarization in stopping material	3.2
Background muons	1.0
Depolarization in production target	0.3
Chamber response	2.3
Resolution	1.5
Momentum calibration	1.5
External uncertainties	1.2
Positron interactions	0.7
Beam stability	0.3
Spectrometer alignment	0.2
Systematics in quadrature	+16.5, -6.2
Statistical uncertainty	3.5
Total uncertainty	+16.9, -7.2

Fringe field, solenoid entrance

Transverse field and depolarization

Fringe field systematics summary

Polarization uncertainty in simulation (units 10⁻⁴) (note sign is opposite to uncertainty in result)

Fringe field and mis-steered beam

Move beam away from optimum position and/or angle to observe change in polarization:

- Comparison I: steer in θ_{y} by 28 mrad.
- → ΔP_{μ} = -105±9 ×10⁻⁴
- Comparison II: steer in x by 10 mm and in θ_x by 10 mrad.

$$\rightarrow \Delta \mathcal{P}_{\mu} = -62 \pm 8 \times 10^{-4}$$

- Comparison III: leave TEC in to introduce scattering.

 $\Rightarrow \Delta \mathcal{P}_{\mu} = -18 \pm 9 \times 10^{-4}$

Compare these differences with simulation to check fringe field systematic.

Estimating field component effects

Depolarization in target material

- Estimate of relaxation is included in simulation; small correction is made to polarization parameter.

- μ SR experiment establishes no fast relaxation.

- Statistical uncertainty in λ is included in decay parameter statistical uncertainty.

Selecting muons in metal target

"stops in target" region (zone 1).

Corrections to fitted data

Depolarization from scattering in production target

- +0.9×10⁻⁴ for full momentum sets, +5.6×10⁻⁴ for reduced momentum sets, for $\mathcal{P}_{\mu}\xi$ only.
- Simulations generated with incorrect polarization relaxation rates
 - \odot +2.9 $\times10^{\text{-4}}$ for Ag sets, +2.4 $\times10^{\text{-4}}$ for Al sets
- Statistical biases
 - χ^2 fitting of Poisson statistics with 1/N weight is biased
 - \odot in fitting data to simulation, weight includes 1/N from both
 - \boldsymbol{o} for unequal statistics, this is biased
 - \odot MCfit biases of order 0.5×10^{-4}
 - Energy calibration fit bias of typically $(-1.1, -0.4, +1.9) \times 10^{-4}$ for ρ , δ , $\mathcal{P}_{\mu}\xi$, applied set-by-set

Consistency of data sets

- © 14 data sets for *ρ* and δ , χ^2 of 14.0 and 17.7 respectively
- (a) 9 data sets used for $\mathcal{P}_{\mu}\xi$, $\chi^2 = 9.7$
- statistical uncertainties only, after corrections

Spectrum fit quality

 \odot Fiducial region: p < 52.0 MeV/c, $0.54 < \cos\theta < 0.96$,

10.0 MeV/c < p_T < 38.0 MeV/c, $|p_z|$ > 14.0 MeV/c

- ◎ All data sets: 11×10^9 events, 0.55×10^9 in (*p*,*cos* θ) fiducial
- Simulation sets: 2.7 times data statistics

Spectrum fit quality

Second Excellent fit quality over $(p, cos\theta)$ fiducial

Results and interpretations

Before revealing hidden parameters, check

- \odot consistency of data sets
- ⊙ spectrum fit quality
- Blind analysis protocol:
 - \odot identify data sets to include
 - \odot all event selection criteria and cuts , e.g., (p,cos heta) fiducial
 - \odot systematic uncertainties and corrections
 - \odot level of required consistency with previous results
 - \odot new measurement supersedes previous TWIST measurements
 - ⊙ publish even if inconsistent with Standard Model
- Including hidden parameters, we get
 - ⊙ results
 - ⊙ comparisons with previous results
 - \odot consequences for fundamental interactions

"The box"

Comparisons with previous results

Are these results final?

- \odot result is 2.9 σ above "physical" limit of 1.0 from matrix element constraints, using correlations for three parameters
- $\odot \mathcal{P}_{\mu} \xi \delta l \rho$ greater for Ag target than Al target
- ⊙ many possible sources of error were checked and rejected
- precision of muon stopping location in data vs. simulation appears to be leading candidate; affects mostly ρ and δ
- **⊙** physics interpretations should be considered *preliminary*

SM extension: Left-Right Symmetric

- Weak eigenstates in terms of mass eigenstates and mixing angle:
 W_L = W₁ cos ζ + W₂ sin ζ, W_R = e^{iω}(-W₁ sin ζ + W₂ cos ζ)
- Solution Structure of the system of the
- Then, for muon decay, the muon decay parameters are modified:

$$m
ho = rac{3}{4}(1-2\zeta_g^2), \hspace{1em} m\delta = rac{3}{4}, \hspace{1em} m\xi = 1-2(t^2+\zeta_g^2),$$

$$\mathcal{P}_{\mu} = 1 - 2t_{ heta}^2 - 2\zeta_g^2 - 4t_{ heta}\zeta_g\cos(lpha+\omega)$$

 • "manifest" LRS assumes g_R = g_L, V^R = V^L, α,ω = 0 (no CP violation).
 • "pseudo-manifest" LRS allows CP violation, but V^R = (V^L)* and g_R = g_L.
 • LRS "non-manifest" or generalized LRS makes no such assumptions.

LRS parameters from muon decay

Restricted ("manifest") LRS

General LRS

U. de Montréal, April 12, 2010

G.M. Marshall, Results from *TWIST*

Summary

- Systematic uncertainties in muon decay parameter measurements were substantially reduced in *TWIST*.
- © Total uncertainties were reduced by factors of **8.7**, **11.6**, and **7.0** for ρ , δ , and $\mathcal{P}_{\mu}\xi$ respectively, roughly achieving the goals of the experiment.
- ^(a) Differences with Standard Model predictions are respectively -0.3 σ , +2.2 σ , and +1.2 σ .
- The significant deviation of $\mathcal{P}_{\mu}\xi\delta/\rho$ above the limit of 1.0 is assumed to be due to an additional systematic uncertainty, to be resolve prior to publication.

Many Thanks!

Supported by TRIUMF and NRC, and through grants from NSERC (Canada) and DOE (USA). Computing facilities of WestGrid are gratefully acknowledged.

Aside: electron spectrum from μ -Al

Parameter correlations

ρ and δ systematic correlations

- The ρ and δ involve the momentumdependence of the yield and asymmetry
- They have:
 - \odot same upstream shapes
 - \odot opposite downstream shapes

Image: Effects that

54

- \odot distort the momentum, and
- \odot couple to the yield
- distort ρ and δ similarly
- Search Example: bremsstrahlung

Why are δ and $P_{\mu}\xi$ anti-correlated?

 \odot Anti-correlation between statistical uncertainties for δ and $P_{\mu}\xi$

- Three types of systematics influence the asymmetry measurements
 - Distort P_{μ} ; only impact $P_{\mu}\xi$
 - Distort contribution of $P_{\mu}\xi\delta$ derivative; only impact δ
 - Distort contribution of $P_{\mu}\xi$ derivative; impact **BOTH** $P_{\mu}\xi$ and δ

Testing the Standard Model

Model independent muon handedness:

$$Q^{\mu}_{R} = \frac{1}{2} [1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta]$$
 (SM value is 0)

Solution Structure in the symmetric models (simplified!):
 $W_L = W_1 \cos \zeta + W_2 \sin \zeta, \quad W_R = -W_1 \sin \zeta + W_2 \cos \zeta$ $\frac{3}{4} - \rho = \frac{3}{2}\zeta^2, \quad 1 - \mathcal{P}_{\mu}\xi = 4\{\zeta^2 + \frac{m_1^4}{m_2^4} + \zeta\frac{m_1^2}{m_2^2}\}$

⊙ more on this later...

Limits on LRS parameters: PDG08

Observable	m₂ (GeV/c ₂)	ζ	e s	Ş
m(K _L º)- m(K _S º)	>700		reach	(P)MLRS
Direct W _R searches	>1000 (D0) >788 (CDF)		clear signal	(P)MLRS decay model
Electro- weak fit		<0.013	fit	(P)MLRS
β decay	>310	<0.040	both parameters	(P)MLRS light v _R
μ decay*, <i>TWIST</i>	>475 (>530)	<0.021 (<0.016)	model independence	light v _R

* in generalized LRS model; to be interpreted as $m_2(g_L/g_R)$, $\zeta(g_R/g_L)$.