

Physique de la matière condensée

Cours 15 Interactions magnétiques

François Schiettekatte Université de Montréal Automne 2009

Résumé

- Interaction dépendante du spin
 - □États singulet et triplet
 - □ Formule de Heitler-London
 - □ Modèle d'Heisenberg

2

Interaction dépendante du spin

- Interaction dipôle-dipôle:
 - □ Trop faible $\sim \frac{(g\mu_B)^2}{r^3} \sim \alpha^2 \left(\frac{a_0}{r}\right)^3 \cdot 13.6eV$
 - □ Dépend de $\vec{R}_1 \vec{R}_2$
- Imaginons la situation la plus simple possible
 - $\vec{R}_1 \quad \vec{R}_2$
 - □ Deux protons:
- **†•** •
- \square Fonctions d'onde des e-: $\phi_1(\vec{r})$, $\phi_2(\vec{r})$
- □ Lorsqu'ils s'approchent: recouvrement, perturbation
- □ On considère un faible rapprochement, pas d'excitation

États singulet et triplet

- Les e possèdent un degré de liberté que nous n'avons pas traité formellement: spin
- L'hamiltonien ne dépend pas explicitement de celui-ci donc on peut écrire les fonctions propres du système comme une combinaison des fonctions propres de spin |↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩
- soit:

États singulet et triplet

- Fonction totale = spatiale x spin
- Fonction total = antisymétrique
 - ☐ Singulet = fonction impaire
 - Doit multiplier fonction spatiale paire
 - ☐ Triplet = fonctions paires
 - Doivent multiplier fonction spatiale impaire

tableau

4

Formule de Heitler-London

- Prévoit ferromagnétisme et antiferromagnétisme selon recouvrement
- Prédit correctement la 1ère règle de Hund
 - \square e.g. Pr³⁺: 2 e⁻ dans couche 4f
 - \square Recouvrement parfait et I = 0 si fonctions orthogonales
 - \square $\varepsilon_t \varepsilon_s = -2V$
 - □ État triplet de plus basse énergie
 - ☐ Minimise l'interaction coulombienne

6

Modèle d'Heisenberg

 On peut montrer (mais on a pas le temps) que l'interaction liée au spin entre électrons localisé sur différents sites est données par la somme sur les paires

$$H = -\sum_{\text{paires}} J \hat{S}_1 \cdot \hat{S}_2$$

- \square Ne dépend pas de $\vec{R}_1 \vec{R}_2$ comme interaction dipôle-dipôle
- Si $J(|\vec{R}_1 \vec{R}_2|) > 0$: ferromagnétisme
- Si $J(|\vec{R}_1 \vec{R}_2|) < 0$: antiferromagnétisme
 - □ Prochain cours

,

Types d'échange

- Direct
 - □ On vient d'en discuter
- Indirect
 - □ implique les électrons de conduction
- Super-échange
 - ☐ Implique les électrons d'un atome neutre entre deux atomes

3

Prochain cours

- Ordre magnétique
- Ondes de spin
- Champ moyen

9