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A new method for deconvoluting data with statistical noise and sharp spike in the actual profile has been developed. It is
applicable to a kernel of the general form and it allows to reveal some structure information which was not visible in the original
data signal. The unknown function is assumed to be a superposition of a delta function and cubic splines. It is well adapted to the
measurement of depth profiling of elements in matter by means of nuclear microanalysis.

1. Introduction

One technique frequently used to remove noise
from digital measurements consists of an optimal
(Wiener) filtering following a fast Fourier transform
(FFT) [1]. This method has been used successfully in a
number of experiments [2,3]. FFT can equally be used
to perform deconvolutions. The convoluted signal
would first be filtered. A division by the FFT of the
resolution function and an inverse FFT would then be
used to produce the deconvoluted signal. Unfortu-
nately. this approach is limited by two serious con-
straints. The first has to do with the form of the kernel
involved in the convolution. The second is related to
the presence of spikes in the actual signal function.

A general expression for the convolution of a func-
tion of one variable f(x) is

g(x) = '/;'lf(x')K(x, x')dx' (1)

where K is the kernel of the convolution and g is the
convoluted function. In Eq. (1), f and K are assumed
to be defined for 0 <x’ < 1 and for x € R. In order for
a one-dimensional FFT to be readily applicable, the
kernel K must be of the form

K(x, x"y=k(x—x"). 2)

The Fourier transform could be applied to the general
form of K but this would require a two-dimensional
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FFT. For many problems of interest, the amount of
data is such that a 2D FFT would be impractical. This
is particularly true when real time data analysis is
required in a PC environment. An additional difficulty
in some measurements comes from the presence of
physical sharp spikes in the actual signal f(x'). These
spikes have high frequency components that would be
lost in the filtered signal.

In this paper we present an efficient technique,
bascd on finite elements, which is applicable to the
deconvolution problem of noisy data with a kernel of
the general form (such as Eq. (1)) and a signal function
with a 3-function-like spike. This technique will then
be applied to deconvolute hydrogen implantation pro-
files in materials by elastic recoil detection analysis [4].
In Section 2, we briefly describe the experimental
conditions and the nature of the measurements which
led us to develop this technique. In Section 3 we
describe the deconvolution method in detail. The
method is applied to computer simulated measure-
ments in Section 4 and its accuracy is assessed. Our
deconvolution method is applied to experimental mea-
surements in Section 5. Finally, Section 6 gives a sum-
mary and some concluding remarks.

2. Experimental situation

In this section we describe the nature of the experi-
mental condition which has motivated the development
of a new deconvolution technique. One method used
to measure quantitative depth profiles of light ions (all
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H and He isotopes) implanted in various substrates is
elastic recoil detection analysis with an electromagnetic
particle filter (ERD-E X B) [4]. The measurements ob-
tained from this technique are convolutions of an ac-
tual depth profile with a kernel function which is also a
function of depth [5]. As a result, K is not of the
simple form given in Eq. (2). For example, in Sections
4 and 5 a deconvolution problem with a kernel of the
form

K(x,x)= ! exp[ & _x,)z‘ )
V2mwo(x') 202(x')

is considered. In Eq. (3), the parameter & is given by

o (X') =0 +8,x + 802x’2. 4)

and so depends on x'. In this expression, the coeffi-
cients gy, 8., 8., have to be determined for each
combination of incident particle, recoiled particle and
substrate. The coefficient o, is associated with the
detector resolution. Coefficients 8, and 8., account
for multiple scattering and straggling of the incident
and of the recoiled particles as they move through the
substrate. As an example, for H implanted in Be and
depth profiled by means of a 350 keV He beam, these
coefficients are: oy =4.95 nm, &, =0.794 om, 8, =
3.96 X 1073, with x' given in nm [5]. In this particular
case, expressions (3) and (4) for the standard deviation
are valid for x <100 nm.

One important feature of our measurements is the
presence of a monatomic layer of H adsorbed at the
surface of the substrate. This layer is due to the pres-
ence of contaminants such as water vapour (even when
a trapping cryostat is used) and the migration of deeper
hydrogen retained by binding energy. This spike in the
hydrogen density at the surface appears as a Gaussian
density profile in the ERD-E X B measurement.

Another difficulty has to do with the presence of
statistical noise in the measurements. In certain sub-
strates, significant desorption processes have been ob-
served during measurements [8]. Hence, the most reli-
able profiles are obtained for the lower fluences of
incident particle. This procedure unfortunately leads to
higher statistical noise. Better statistics can be ob-
tained by repeating the measurement at several loca-
tions on the substrate (when the implantation is uni-
form) and by bringing the detector closer to the sub-
strate. These procedures are unfortunately not always
practical. Hence, it is imperative to construct a method
which can perform reliable deconvolutions on data
with relatively high statistical noise.

3. Deconvolution technique

We now describe the method used to determine the
actual deposition profile f(x) from a measured signal

h(x). The method is not limited to a particular kind of
measurement technique. It is presented here in general
terms and is applicable to the deconvolution of any
function A with statistical noise. Let f(x) be the pro-
file to be determined and g(x) its convolution with
respect to kernel K, as defined in Eq. (1). If n(x)
represents statistical noise (n(x) < g(x)), then the ac-
tual measurement from which f must be determined is
h(x) =g(x) + n(x). The solution to the deconvolution
problem consists first of expressing the unknown func-
tion f as a sum of known basis functions,

)= T ah(x) =1(3) ©)

for 0 <x <L, the interval of definition of f(x). In Eq.
(5), the bar indicates that the function represents an
approximation to the actual profile f(x). If FFTs were
used, the basis functions ; would represent sine and
cosine functions with arguments being multiples of
2mx/L. For reasons explained in the previous section,
it is more convenient to use a combination of a cubic
spline (i =1,...,n) and a delta function (i = 0). The n
cubic splines are defined on an n — 2 point partition of
the interval. Substituting this expression in Eq. (1)
yields

h(x) = éa,.fOde' K(x, X)W, (¥)=h(x).  (6)

The coefficients «; are then determined by minimizing
the mean square deviation between the approximate
convolution and the measured signal 4. It is important,
however, to impose two constraints in the minimization
process. One is that the total number of counts (area
under the curve) must be the same in both 4 and .
The second is that the approximate function f must be
non-negative. The problem then reduces to that of
minimizing a function H of the form

H=S +)\fdx(h\(x) - .éai,,;)de’ K(x, x')a//,-(x')),
(M

with

n 2
s=/dx(h(x) -y aif(]de' K(x, x')w,.(x')) .
i=0
(8)

The minimisation must be done with respect to the
parameters a; and A. The parameter A is a Lagrange
multiplier. It is introduced to enforce the first con-
straint. With the second constraint, this problem is a
classical quadratic programming problem. It is solved
numerically with a commercial routine [6).

Methods have been proposed to determine the opti-
mal distribution of nodes when representing a function
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with cubic splines [7]. A number of trials have been
made for the problem at hand, and a uniform distribu-
tion of the nodes has been found to be quite satisfac-
tory in all cases considered. In the following, we there-
fore limit our attention to partitions with a uniform
. distribution of nodes. Another parameter which needs
to be determined is the number of nodes in the parti-
tion. This point is addressed in the next section.

4. Numerical experiments

In this section we present deconvolution results
from signals #(x) which have been generated by an
artificial function f(x). The comparison between the
approximate deconvoluted profile f(x) and the known
exact profile f(x) serves to assess the accuracy of the
method. It is also useful in providing a simple rule for
the number of nodes n — 2 needed in the partition. To
be specific, these numerical experiments consist of the
following steps:

1) An arbitrary distribution f(x) is constructed.

2) A convolution g(x) is calculated from Eq. (1).

3) A histogram is constructed from N random num-
bers, consistent with distribution g(x). That is, for N
random numbers 0 <r < 1, A(x) is defined as the num-
ber of random numbers which satisfies

fj;dx g(x)srf_:dx g(x) <fj;+Adx g(x) 9

divided by A4, where A4 is the value between two distinct
channels.

4) A deconvolution is then applied to A(x), as
described in the previous section.

Two example results are illustrated in Fig. 1. In
example (a), the histogram h(x) is defined on the
interval [0, ], with 4 =0.785 keV, and N = 144. The
deconvolution is performed using #» =7 cubic splines.
Despite the relatively large statistical fluctuations in
h(x), the agreement between f and f is seen to be
quite good. Also, one interesting feature of this decon-
volution technique is its ability to reproduce the sharp
density spike at the surface, while efficiently filtering
undesirable noise. In example (b), we see how our
method can reveal structures hidden by the experimen-
tal resolution. This result has been obtained with N =
6667 and 12 cubic splines.

Similar numerical experiments have been made to
determine a simple relation for the number of cubic
splines to use as a function of the number N of
detected particles. A small number of splines will tend
to sample more of the convoluted function and, thus,
smooth out statistical noise more effectively. A larger
number of splines, however, is required in order to
reproduce any structure present in the function f. If
too many splines are used for a given count, non-physi-
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Fig. 1. Deconvolution of artificially constructed signals. In (a),
h(x) is constructed from 144 random numbers distributed
according to g(x), and six cubic splines are used in the
deconvolution. In (b), 12 cubic splines are used to deconvolute
a signal A(x) constructed from 6667 random numbers dis-
tributed according to a convoluted two-peak f(x).

cal structures associated with noise will result. If too
few are used, the deconvoluted profile may miss some
important structures. In order to determine the best
number of splines, a series of numerical experiments
have been conducted. We have calculated the mean
square deviation

1Mo Z
Higf_m(f(x)—ﬁ(x)) dx,

where M =50 and f(x) is obtained each time from a
new generated A(x). We have made the test for vari-
ous values of #» and N, for some selected functions
f(x). Empirically, the smallest error is obtained with

n=52+0.083N2 (10)

for N > 100. This expression for n is used in all the
calculations presented here. This expression has been
found empirically for distributions over approximately
150 channels. A different number of channels may
require a different expression for .
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Fig. 2. Standard deviation ( ) calculated at cach chan-

nel of f(x) obtained from 50 different A(x) generated in cach

instance with 144 random numbers. Two distributions are

considered. In (a). the bulk concentration vanishes at the

surface. In (b), it is finite. The distribution f(x) assumed in
both cases is shown with dotted lines.
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The uncertainty which results from the deconvolu-
tion is illustrated in Fig. 2. The dotted curve shows the
actual profile f(x). The upper and lower curves are
obtained respectively by adding and subtracting the
mcan deviation of the deconvoluted signals obtained
from a large sct of different A(x), each one being
generated with 144 random numbers. When subtract-
ing the mean square, if a negative result is found, the
result is assumed to be zero. The distance between the
dashed and the solid curves represents the uncertainty
in the deconvolution. We note that the maxima of the
distribution for the deconvoluted signal in Fig. 1 may
be shifted compared with those of the actual profile
f(x). This shift is small, however, and it is mainly due
to statistical errors.

Finally, we have studied the behaviour of the mean
of those standard deviations over the deconvoluted
profiles as a function of the number of detected parti-
cles. The results are reported in Fig. 3 for the distribu-
tion function f(x) of Figs. 2a and 2b. Thc rclative
error defined as e=4/§5/N is found cmpirically to
scale as e = £0.083N7'/7 (§ is defined in Eq. (8)).

5. Application to experimental results

Fig. 4 shows an example application to the measure-
ment of an actual implantation profile. This measure-
ment is for hydrogen implanted at 1.5 keV near satura-
tion in a beryllium substrate. The analyzing beam con-
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Fig. 3. Mean of the standard deviations (excluding surface spike) for different numbers of detected particles. The profiles
considered are those of Fig. 2a ( a) and Fig. 2b (e).
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Fig. 4. Profile moditication and desorption of hydrogen (1.3 x

10'7 at./em?) implanted in beryllium at 1.5 keV, induced by

the 350 keV *He probing beam. (a) Deconvoluted profiles

computed with various fluences of the beam. Surface spikes

have been subtracted for clarity. (b) The raw signal and the

deconvoluted profiles for two selected fluences considered in
(a).
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sists of a 350 keV He beam incident on the surface at
25°. In Fig. 4, each profile is obtained with incident He
fluences varying from 1.02 X 10" to 31.3 x 10"
4lle/cmz. The deconvolution results are plotted in Fig.
4a. For clarity, the surface spike in hydrogen density
has becn subtracted from the deconvoluted profilcs.
This figure clearly shows the modifications to the im-
planted hydrogen depth profile as the fluence of the
He beam increases. The initial implantation profile has
a maximum near 42 nm, and a full width at half
maximum of approximately 40 nm. After being exposed
to a small fluence of the probing beam, the depth
profile begins to diffuse partly in the defect profile
crcated during the implantation, thus forming a protu-
berance closer to the surface (in agreement with cor-
rected TRIM [9] runs). After a large fluence, we ob-
scrve a surface density with an absolute maximum at
the surface. The profile also diffuses significantly
deeper into the material. Fig. 4b shows experimental
data together with the deconvoluted signal computed
with two fluences. For the lower fluence, the surface
contamination concentration amounts to a relatively
low value of 15 at.%. When deconvoluted, this fraction
increases considerably to approximately 40 at.%. This
spike is desorbed relatively rapidly and it is esscntially
absent at the higher fluencc.

Fig. 5 shows a hydrogen profilc implanted to satura-
tion in carbon with an energy of 1 keV. The usc of our
deconvolution procedure reveals the presence of two
maxima in the actual profile; a feature which is not
readily visible from the raw data. This structure would
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) (see Eq. (6)), for H implanted to saturation in carbon.
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be due to a fast release of hydrogen from a depth near
to the mean range, i.e. where the hydrogen concentra-
tion was at its highest value [10].

6. Summary and conclusion

A new technique for deconvoluting data with statis-
tical noise and sharp physical spikes has been devel-
oped. The unknown function is represented as a super-
position of a delta function and cubic splines. While a
non-uniform distribution of nodes is possible, a defini-
tion of splines on a uniform partition of the interval is
found to be satisfactory in all the cases considered.
This method does not completely remove statistical
error, but it considerably enhances the signal-to-noise
ratio and produces smooth deconvoluted profiles. Also,
compared with more usual methods which use FFT
filtering and inverse FFT, the present technique has
the advantage of preserving physical spikes in the func-
tion to be deconvoluted. It is also applicable to a more
general form of the kernel involved in the convolution.

The method has been applied to the measurement
of hydrogen density profiles in beryllium and carbon
substrates. It has served to demonstrate the modifica-
tion in the implanted hydrogen profile caused by expo-
sure to an energetic helium probing beam. It shows
also that one can get structure information from ERD
profiles.
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