

Dark Matter Search with the EDELWEISS-II experiment

- Scientific context - The experiment

- First commissioning results

J. Gascon UCB Lyon 1, CNRS/IN2P3/IPNL

July 17th, 2008

Lyon 1

UB

Context

- Dark Matter
- Direct Searches
- Some Experiments: Xenon, CRESST, CDMS
 - Spin-independent bias: PICASSO not discussed here!

EDELWEISS

- EDELWEISS-I successes and limitations
- EDELWEISS-II: installation and commissioning; first data with new InterDigit detectors
- The future: EURECA and ULISSE

Motivation for Dark Matter Searches

• Cold Dark Matter present at all scales in the Universe...

- ... and soon, maybe also in collider experiments (LHC)
 - Natural candidates arise from New Physics scenarii, such as SUSY
- Direct Searches: linking the two worlds
 - The Dark Matter in our Galaxy is indeed Weakly Interacting Particles
 - The new particles found in colliders are indeed in our halo

- If the Mass of Weakly interacting massive particles (WIMPs) forming our Galactic halo is ~100 GeV:
 - >1000 WIMPs/m³ in this room
 - Wimp-nucleus collisions produce 10-50 keV nuclear recoils
- If WIMP ~ SUSY neutralino (σ prediction):
 - as many as 1 WIMP-nucleus collision per kg per month (or as few as 1 per ton and per year)
- Direct search: detect these energy deposits
- Main challenge: background from natural radioactivity (people = 10¹⁰ decay/kg/year)

Direct Searches and SUperSYmmetry

 10⁻⁸ pb is an extremely significant goal for direct detection: Test of cosmologicaly + SUSY motivated "Focus Point" region

10⁻⁹ to 10⁻¹⁰ pb even more interesting (but significantly more challenging, experimentaly)

- Exponential spectrum (threshold)
- Nuclear recoil identification (wrt electron recoils):
 >100 reduction in background (caveat: neutron background)
- A³-dependence of rate

Annual modulation?

- Effect of Sun/Earth velocities addition in flux
- Claimed to be observed at lowenergy in NaI (DAMA)
- Non-modulating component (~1 evt/kg/day, ~total rate in NaI) not observed in Ge (EDELWEISS, CDMS), Xenon, CsI (KIMS): opens the door to (too many?) new models
- Signal in low-efficiency, nearthreshold region
- No "source off" (like all searches): observation of signal in different detectors/targets essential for credibility!

Spin-Independent Direct Searches

- Four most sensitive expts use different technologies
- CDMS: Ge
 Phonon+Ionisation
- Xenon-10: Xe
 Ionisation+Scintillation
- CRESST-II: CaWO4
 Heat+Scintillation
- EDELWEISS: GeHeat+Ionisation

Nuclear vs electronic recoil discrimination

- Large difference of dE/dx of electron and ion recoils
- Nucl. recoil length: 20nm in solid
 - directionality of flux hard to measure
- Ionization/Scintillation yield depends on recoiling particle (ion or electron)
- Phonon (heat): most precise total energy measurement
- Simultaneous measurement to extract
 - total energy
 - ion/phonon yield

- Different scintillation (S1) and ionisation (S2) yields for nuclear and electronic recoils
- PMT array for (x,y), drift time for z : fiducial volume

Xenon-10

July 17th, 2007

U de Montreal, DM search with EDELWEISS-II

Xenon-100

- (10 \rightarrow) 170 kg LXe, (5 \rightarrow) ~50 kg fiducial
- (89 \rightarrow) 242 low-activity PMTs, (15 \rightarrow) 30 cm drift

CRESST: Scintillation vs heat

- 17 x 300 g modules installed in Gran Sasso
- W films: Superconducting Transition Edge temperature sensors + SQUID read-out
- Absorber: CaWO4 cristal (Wimps = W recoils, neutrons =
 - Q. Ca recoils)

Cryogenic Germanium detectors

- Ge: Very pure material
- Different ionization yields for nuclear recoils (WIMP or neutron scattering) and electronic recoils (β,γ decays)
 - discrimination of dominant background

July 17th, 2007

U de Montreal, DM search with EDELWEISS-II

Potential limitations

- Radioactivity of environment (and surface)
- Neutron background (PE, muon veto, coincidences)
- Deficient charge collection (mostly surface β 's)

CDMS β calibration

EDELWEISS γ calibration: detectors without/with Ge amorphous layer under Al electrode

CDMS Ge detectors

CDMS detectors

- (x,y) position-dependent signals
 - From relative quadrant timing and intensities

- Ionization yield + phonon timing: surface β rejection
 - Phonon risetime
 - Phonon delay wrt ionisation
 - Difference due to physics of different types of phonons (not directly z-position): a single film can veto both surfaces

- 2008: 1000 kg.d raw data with 15x250g Ge
- So far 650 kg.d analyzed
- 400 kg.d after quality cuts
- 121 kg.d after fiducial/acceptance cuts.

- 97 evts in nuclear recoil band before timing cut
- 0 evts after timing cut
- Expected 0.6 +- 0.3

EDELWEISS-II Collaboration

- CEA Saclay
- CSNSM Orsay
- IPN Lyon
- Institut Néel Grenoble
- FZ/ Universität Karlsruhe
- JINR Dubna

July 17th, 2007

Laboratoire Souterrain de Modane

July 17th, 2007

U de Montreal, DM search with EDELWEISS-II

EDELWEISS-I GeNTD detectors

- Simultaneous measurement of
 - Heat @ 17 mK with Ge/NTD sensor (slow: ~10 ms risetime, full thermalisation)
 - Ionization @ few V/cm with Al electrodes
- Ion./Recoil set to 1 for electronic recoils
- Ion./Recoil = 0.3 for nuclear recoils
- Event-by-event discrimination of electron recoils (main background)

Energy resolution

- Heat and ionisation energy resolution helps diagnostics
- Example: X-ray peaks due to cosmogenic population of ⁶⁵Cu and ⁶⁸Ge + neutron activation of ⁷¹Ge, also used for low-energy calibration

EDELWEISS-I

- 62 kg.d with 3x320g detectors
- Observed 1 neutron-neutron coincidence (MC expects 2 singles)
- Tail of events with bad charge collection (limits sensitivity)

- Goal: 10⁻⁸pb, <0.003 evts/kg/day
- More mass
- Better shielding agains neutrons
 - From U/Th in rock: more polyethylene, solid angle
 - From muons in Pb shield/ in rock: muon veto
- Better control of backgrounds
 - Material selection / Cleaning procedure / Environment
- Better control of surface events
 - Develop new detectors

New EDELWEISS-II setup

- Cryogenic installation (~ 20 mK)
 - Reversed geometry cryostat
 - Dilution refrigerator + pulse tube
 - Room for up to 120 detectors
- Shielding (Goal: <0.003 evt/kg/d)</p>
 - Clean room + deradonized air (15 mB/m³)
 - 20 cm Pb
 - 50 cm PE
 - Active μ veto (> 98% coverage)
- Remote operation (cryogenics, DAQ, calibrations, regeneration)
- 9 cool-downs since January 2006

EDELWEISS detectors

~10 kg of Ge:

- 23 "standard" Ge/NTD bolometers
- 5 "NbSi" bolometers
- 4 "Interdigit" bolometers

EDELWEISS Ge-NTD detectors

- 23 x 320 g Ge, 17 mK (3 detectors only in EDELWEISS-I)
- Simple design, uniform heat and ionisation response:
 - *Thermal* measurement (Ge-NTD heat sensor)
 - Bevelled guard ring (uniform field)
- Amorphous Ge or Si sublayer
- Radiopurity: Cu+Teflon holder

Results from standard GeNTD detectors

- Commissioning background run (spring 2007) ~ 19 kg.d
- 8 lowest threshold detectors selected
- **Reduction of factor 3 of** α and β backgrounds

Operation of large number of detectors

- Start of physics run: november 2007
- More than 15 operational GeNTD detectors
- Choose a 30 keV threshold (see α bkg, expect β bkg)

Results from standard GeNTD detectors

- Significant reduction of the γ background
- Calibration with β source
 (²¹⁰Pb) to study the
 detector's response to
 surface events
- ~ 100 kg.d of fiducial exposure accumulated after quality cuts (analysis underway)

EDELWEISS NbSi detectors

- Developed @ CSNSM since
 2003
- Identification of surface events using athermal phonon measurement with NbSi thin film thermometers
- Two components:
 thermal + athermal
 - In surface events, extra athermal in corresponding film
 - Thermal signals = total energy
- Discrimination parameter = asymmetry of the top/bottom athermal components

EDELWEISS NbSi detectors

- Surface rejection ok
- Some problems in 2007 with film reproductibility, contacts, leakage currents
- Resolutions hasn't reached Ge/NTD performances

EDELWEISS: InterDigit Detectors

Results from Ge/Interdigit detector

- 200g prototype test at Modane
- Good resolution
- 100 g fiducial volume
- Low threshold (<20 keV) possible again

Results from Ge/Interdigit detector

- ~4 kg.d low-background physics data
- No nuclear recoils down to <20 keV
- Currently
 - 3 new 400g detectors
 - Precise measurement of β rejection
- Very promising!

- EURECA: beyond 10⁻⁹ pb
- Major effort in background control and detector development
- Joint effort from teams from EDELWEISS, CRESST, ROSEBUD, CERN, +others...
- >>100 kg cryogenic experiment, multi-target
- Part of ILIAS/ASPERA European Roadmap

EURECA preferred site: ULISSE

- n 60 000 m² extension of present LSM
- Linked to
 safety tunnel
 construction
 for Frejus
- n To be dig in 2011-2012

MODANE UNDERGROUND LABORATORY 60'000 m³ EXTENSION

LABORATOIRE SOUTERRAINE DE MODANE AGRANDISSEMENT 60'000 m³

EDELWEISS Conclusions

- "standard" Ge/NTD detectors
 - Show a significant reduction of α , β and γ background
 - 100 kg.d available for analysis
- Ge/NbSi detectors
 - Surface rejection ok but not resolution: pause
- Ge/Interdigit detectors
 - December 2008 : 9 additional detectors
 - July 2009 : 120 kg.d fid. exposure with thresh. <20 keV
 - Up to 35x320g Ge crystal available for reconfiguration as Ge/Interdigit -> largest Ge mass; 10⁻⁹ pb range?
- EURECA: federation of efforts
- ULISSE: great opportunity

Conclusions for SI searches

- XENON is serious competition
 - Will 100 kg detector design succeed in reducing bkg?
- CDMS is still leading
 - More kg.d coming, aiming 2x10⁻⁸pb with current 5 kg Ge at SOUDAN
 - No bkg so far (plan to adjust cuts to reduce it)
 - Sophisticated detector: price?
- CRESST
 - Should start accumulate kgd
- EDELWEISS
 - ID technology should bring it back in the competition
 - 15 kg Ge on hand, to be instrumented ID