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Gravitational radiation 
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[LIGO Scientific Collaboration and Virgo Collaboration, PRL 2016]
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1916

Einstein 

predicts 

gravitational 

waves (GWs)

1960s

Bondi et al: 

“They are 

real!”

Sept 14, 

2015

First direct 

detection by 

LIGO

Hot debate 

whether GWs 

are real

1974

Observation 

by Hulse and 

Taylor 

confirms this

Some history
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Hulse-Taylor pulsar
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Quadrupole radiation

Charge/mass conservation  no monopole radiation

Momentum conservation  no dipole radiation
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Critical assumption

Move far away from sources:  ‘spacetime becomes flat’
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Expanding spacetimes are not asymptotically flat!
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Why assume asymptotic flatness?

Conference Warsaw 1963
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Modelling the expansion
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Describe the Universe by a de Sitter spacetime (= vacuum 
with a cosmological constant Λ)



But isn’t Λ small?

Even though Λ ~ 10-52 m-2, it can cast a long shadow!



Intermezzo: conformal diagrams
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Conformal diagrams for flat spacetimes
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1/𝑟-expansion not applicable when Λ ≠ 0



3 ingredients for the quadrupole formula

 Gravitational perturbation

 Quadrupole moment

 Conservation stress-energy tensor
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First ingredient: gravitational perturbations
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Gravitational perturbation satisfies

so that in the late time regime
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Second ingredient: quadrupole moment
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Third ingredient: binding agent

Conservation of the stress-energy tensor



Einstein’s celebrated quadrupole formula
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[Einstein, 1916]



… now with Λ!

 Limit Λ → 0 recovers Minkowski result

 Pressure terms appear

 Only retarded fields contribute despite tail term
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Is this power radiated positive?

All Killing vector fields are spacelike on 

energy can be 

negative
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For physically realistic sources it is!
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Example: binary system

Assume system is in a circular orbit for all time:

𝑑𝑅∗

𝑑𝑡
= 0 and

𝑑Ω∗

𝑑𝑡
= 0

Adiabatic approximation valid on cosmological time scales

 Fine-tuned trajectory

 System remains bound despite cosmological expansion
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Example: binary system

 Corrections ∼ Λ 𝑡𝑐
2

 No truncation in Λ



Are these differences observable?

What systems would lead to 1% corrections to the power?

Assume that

 Corrections ~ Λ 𝑡𝑐 generalizes to ~ G 𝜌(𝑧) 𝑡𝑐

For z=100, characteristic time scale needs to be 𝑡𝑐~ 107years

 2 𝑀⊙ black hole binary: 𝑑 ∼ 0.4 𝑝𝑐

 106 𝑀⊙ black hole binary: 𝑑 ∼ 30 𝑝𝑐
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Conclusion

Even a tiny cosmological constant can cast a long 

shadow.
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 Radiation zone very different

 1/𝑟 expansions not useful

 Tail terms

 Potentially observable



Thank you for being here today!
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