An overview of recent LHC searches for the supersymmetric partners of gluons and (light) quarks

J. Maurer (IFIN-HH, Bucharest)

Montreal, January 25, 2018





## The Standard Model: accuracy up to the TeV scale



ATLAS (left), Eur. Phys. J. C 74 (2014) 3046 (right)

EL OQO

イロト イボト イヨト イヨト

### But many open questions...

- Gravitational interactions?
- Neutrino oscillations / masses?
- Nature of Dark Matter?
- Baryogenesis?

- Unification of strong and electroweak interactions?
- Hierarchy between electroweak and Planck scales?
- No CP violation in strong interactions?
- Number of fermion generations?
- Origin of the 19 free parameters?

## What is Supersymmetry?

• A superalgebra generated by infinitesimal transformations swapping fermions and bosons while preserving the action for interacting fields:

 $\begin{array}{c} \text{SM fermion chiral projection} \\ \text{scalar superpartner} \\ \text{auxiliary field without dynamics} \begin{pmatrix} \psi_{L/R} \\ \phi \\ F \end{pmatrix} \stackrel{\epsilon}{\to} \begin{pmatrix} -i(\sigma^{\mu}\epsilon^{\dagger})\partial_{\mu}\phi + \epsilon F \\ \epsilon \cdot \psi_{L/R} \\ -i\epsilon \cdot (\bar{\sigma}^{\mu}\partial_{\mu}\psi_{L/R}) \end{pmatrix} \\ \\ \text{SM vector gauge field} \\ \text{gaugino superpartner} \\ \text{aux. field without dynamics} \\ \text{aux. scalar field, gauged away} \\ \text{aux. scalar field, gauged away} \\ \text{aux. scalar field, gauged away} \\ \text{aux. Weyl spinor, gauged away} \end{pmatrix} \stackrel{\epsilon}{\to} \frac{1}{\sqrt{2}} \begin{pmatrix} i\epsilon\partial^{\mu}\xi - i\epsilon^{\dagger}\partial^{\mu}\xi^{\dagger} + \epsilon\sigma\mu\lambda^{\dagger} - \epsilon^{\dagger}\bar{\sigma}^{\mu}\lambda \\ \epsilon D + \frac{i}{2}(\sigma^{\mu}\bar{\sigma}^{\nu}\epsilon)(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) \\ -i\epsilon\sigma^{\mu}\partial_{\mu}\lambda^{\dagger} + \epsilon^{\dagger}\sigma^{\mu}\partial_{\mu}\lambda \\ \epsilon \cdot \xi + \epsilon^{\dagger} \cdot \xi^{\dagger} \\ \epsilon^{\dagger}\lambda^{\dagger} - i\epsilon^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\xi \\ 2\epsilon b - (\sigma^{\mu}\epsilon^{\dagger})(A_{\mu} + i\partial_{\mu}a) \end{pmatrix} \end{array}$ 

• But why?

(notation from S. Martin, hep-ph/9709356)

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

# While trying to figure out strong interactions...



- Historically (Miyazawa, 1966), to try merging the separate classifications of mesons and hadrons into representations of SU(6), into a single structure
- Later to understand connections between fermionic *s* and bosonic *t*-channel amplitudes in S-matrix program
- Further on superstrings, reason for parity violation, for massless neutrinos...
- (P. Ramond and P. Fayet, Eur. Phys. J. C 74 (2014) 2841)

(日) (四) (日) (日) (日)

### Nowadays, to solve the hierarchy problem

• In SM, natural Higgs mass = Planck scale due to large radiative corrections  $\Rightarrow$  huge fine-tuning required to obtain  $m_h = 125$  GeV instead



(Figures from S. Martin, hep-ph/9709356, and D. Kazakov, hep-ph/0012288)

#### Other nice features!



Eur. Phys. J. C 77 (2017) 824 (top), and D. Kazakov, hep-ph/0012288 (bottom)

## The Minimal SuperSymmetric Model

- $\bullet\,$  Two Higgs doublets needed, to cancel axial anomalies  $\rightarrow$  5 massive Higgs bosons
- One scalar partner for each fermion chirality: squarks  $\tilde{q}_L$ ,  $\tilde{q}_R$ , charged sleptons  $\tilde{\ell}_L$ ,  $\tilde{\ell}_R$ , sneutrinos  $\tilde{\nu}$

 $\Rightarrow$  R and L scalars mixing controlled by Yukawa coupling  $\rightarrow$  mostly relevant for stops  $\tilde{t}_1$ ,  $\tilde{t}_2$ , sbottoms  $\tilde{b}_1$ ,  $\tilde{b}_2$ , staus  $\tilde{\tau}_1$ ,  $\tilde{\tau}_2$ 

- Eight gluinos  $\tilde{g}$ , Majorana fermions partners of the gluons
- Other vector gauge and Higgs boson partners mix and result in four massive **neutralinos**  $\tilde{\chi}_1^0$ ,  $\tilde{\chi}_2^0$ ,  $\tilde{\chi}_3^0$ ,  $\tilde{\chi}_4^0$  and four massive **charginos**  $\tilde{\chi}_1^{\pm}$ ,  $\tilde{\chi}_2^{\pm}$
- A gravitino (if it exists), mixing with the Goldstone fermion coming from the spontaneous SUSY breaking to acquire a mass

• No superpartners observed so far!  $\Rightarrow$  SUSY broken spontaneously at a higher energy scale

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

## Soft SUSY breaking

• Breaking in a hidden sector, mediated to SUSY sector via e.g. gravity or gauge interactions; effect parametrized at low energy:

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left( M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left( \widetilde{\overline{u}} \, \mathbf{a}_{\mathbf{u}} \, \widetilde{Q} H_u - \widetilde{\overline{d}} \, \mathbf{a}_{\mathbf{d}} \, \widetilde{Q} H_d - \widetilde{\overline{e}} \, \mathbf{a}_{\mathbf{e}} \, \widetilde{L} H_d + \text{c.c.} \right) - \widetilde{Q}^{\dagger} \, \mathbf{m}_{\mathbf{Q}}^2 \, \widetilde{Q} - \widetilde{L}^{\dagger} \, \mathbf{m}_{\mathbf{L}}^2 \, \widetilde{L} - \widetilde{\overline{u}} \, \mathbf{m}_{\mathbf{u}}^2 \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \, \mathbf{m}_{\mathbf{d}}^2 \, \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \, \mathbf{m}_{\mathbf{e}}^2 \, \widetilde{\overline{e}}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}) .$$

 105 unknown parameters! But very constrained ("flavor diagonality") by absence of B or L violation, FCNC, hadron decay and mixing rates...



## **R**-parity

- MSSM potential may contain terms violating B or L numbers conservation
- Couplings must be very weak, otherwise can mediate e.g. fast proton decay:



- More radical: enforce conservation of *R*-parity =  $(-1)^{3(B-L)+2s}$
- $\Rightarrow$  "dangerous" couplings are no longer allowed in the models
- $\Rightarrow$  SUSY particles always produced in pairs, decay into a lighter SUSY particle + SM
- $\Rightarrow$  Lightest (LSP) is stable! If neutral and weakly-interacting, suitable DM candidate
- $\Rightarrow$  LSPs produced in *pp* collisions escape the detector  $\rightarrow$  source of missing momentum

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

### Production cross-sections at LHC

• Access to a wide range of colored superpartners  $(\tilde{g}, \tilde{q})$  masses at LHC:



Borschensky et al, Eur. Phys. J. C 74 (2014) 12 (right)

Image: A math the second se

### Squark decay modes (non exhaustive!)

• Dominant mode =  $\tilde{q} \rightarrow q\tilde{g}$  if kinematically allowed; otherwise decay via electroweak / Yukawa / RPV coupling:



(diagrams taken from various ATLAS publications)

LHC searches for gluinos and squarks

## Gluino decay modes (non-exhaustive!)

- $\bullet~$  Gluinos couple only to squarks  $\rightarrow$  similar decay modes, with 1 additional quark
- Decay mediated by virtual squark if  $m(\tilde{q}) + m(\mathsf{LSP}) > m(\tilde{g})$



## Example of recent "realistic" spectrum

• pMSSM11 best-fit scenario with respect to collider + astrophysical constraints:



Bagnasci et al, 1710.11091 [hep-ph]

• • • • • • • • • •



◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへの January 25, 2018

15 / 36

LHC searches for gluinos and squarks

# A simple search (7 TeV, 35 $pb^{-1}$ )



Phys. Lett. B 701 (2011) 186-203

E SQA

イロト イボト イヨト イヨト

### How can these results be improved?

- Higher energy (  $\sqrt{s}$  =7  $\rightarrow$  13 TeV), larger dataset (  $\rightarrow$  10  $^3\times$  2010 data)
- Improvement of the accuracy of the background estimates  $\Rightarrow$  control regions, data-driven methods
- More powerful discriminant variables and advanced reconstruction methods  $\Rightarrow$  razor / RJR, ISR topologies, boosted objects tagging
- Scan of the multi-dimensional MSSM phase space
   ⇒ multiple dedicated signal regions
- Advanced statistical analysis of the results
  - $\Rightarrow$  combined + binned likelihood fits

In the following slides, many plots taken from the latest ATLAS  $0L+E_T^{miss}+jets$  search (13 TeV, 36 fb<sup>-1</sup>), 1712.02332 [hep-ex]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

### Backgrounds



LHC searches for gluinos and squarks

# Control regions for $W(\rightarrow \tau \nu)$ +jets and $t\bar{t}$ backgrounds

- MC simulation of W+jets and  $t\bar{t}$  normalized to observed data in control regions with similar kinematic requirements but signal-free
- Reduces theory uncertainties: simulation only needed to determine the SR/CR "transfer factor", instead of the complete SR fiducial cross-section
- Here, CR $\rightarrow$ SR extrapolation very minimal ( $\tau \leftrightarrow e/\mu$ ):



# Control regions for $Z(\rightarrow \nu\nu)$ +jets and $t\bar{t}$ backgrounds

- Fancier variation: for high boson  $p_{\rm T}$ ,  $\sigma_{\rm fid}(pp \rightarrow Z+{\rm jets}) \approx K \times \sigma_{\rm fid}(pp \rightarrow \gamma+{\rm jets})$ , with  $K \sim g^2/e^2$  independent of the fiducial selection
- Thus Z(→ νν)+jets can be estimated from γ+jets data events (γ ↔ νν̄), treating the photon as an invisible particle, and residual MC-based corrections



• Cross-check possible with  $Z(\to \ell\ell)$ +jets data events: much closer to  $Z \to \nu\nu$ , but lower statistics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

### More uses of the $Z \leftrightarrow \gamma$ substitution

- Used similarly to estimate  $t\bar{t}Z/\gamma^*$  with the help of a  $t\bar{t}\gamma$  control region
- Or for the  $Z/\gamma^*(\rightarrow \ell\ell)$ +jets background in the SUSY searches looking at the dilepton invariant mass spectrum  $\rightarrow$  no need to rely on simulation of "fake"  $E_T^{miss}$



• • • • • • • • • • • •

# Fake $E_{\rm T}^{\rm miss}$ in QCD multijets events: jet smearing method



method detailed in Phys. Rev. D 87 (2013) 012008

イロト イボト イヨト イヨ

## Jet smearing applied

- In practice, the method is used to obtain shapes and transfer factors
- But the global normalization is set by a dedicated control region:



EL OQO

< □ > < □ > < □ > < □ > < □ >

## Signal topologies with initial state radiation

- For smaller  $\Delta m(\tilde{q}/\tilde{g}, \text{LSP})$ , decay products are softer
- Solution: rely on signal events with a very hard initial-state radiation (ISR):



- Recoil of the squark/gluino pair against the ISR + heavy LSP  $\to$   ${\it E}_{\rm T}^{\rm miss}$   $\sim$   ${\it p}_{\rm T}^{\rm (ISR)}$
- Striking event signature: one hard jet, high E<sup>miss</sup> in the opposite direction, all other objects (very) soft

イロト イポト イヨト イヨト

# The ultimate ISR topology

- $\bullet\,$  Decay products too soft to be reconstructed  $\rightarrow\,$  monojet +  $E_{\rm T}^{\rm miss}$  search
- Same final state as direct search for (non-SUSY) Dark Matter:



EXOT-2016-27, 1711.03301 [hep-ex]

A B A B A B A

## Recursive Jigsaw Reconstruction

- Set of rules to pair final state objects and reconstruct/guess missing information (split  $E_{\rm T}^{\rm miss}$  into several invisible particles, reconstruct momenta of intermediate particles in the decay chain...)
- $\bullet\,$  Orthogonal constraints used for the different steps  $\to$  provides uncorrelated discriminant variables



• Then many variables can be built: momenta and scales and ratios, angles, particle counts, at each step of the decay chain

## RJR – examples of variables





-

LHC searches for gluinos and squarks

## Boosted heavy particles (top, W/Z/h bosons)



# Tagging of boosted top quarks



# 0L: everything together...



• + 19 alternative RJR-based SRs, with comparable performance

### Statistical interpretation of the results

- Combined SR+CRs fit of signal+backgrounds strengths/nuisance parameters
- OL search uses "simple" approach: only one SR included in the fit ⇒ chosen for each signal scenario:



#### Statistical combination of signal regions

- $1L+E_T^{miss}+jets$  search relies on a simultaneous fit of up to 9 orthogonal binned SRs + 2 CRs for each set of 2 SRs
  - + bin-by-bin background normalization to bypass MC mismodelling



Phys. Rev. D 96 (2017) 112010

ELE NOR

イロト イポト イヨト イヨト

# ATLAS vs CMS approaches

- CMS often performs fine-granularity scans of the phase space
- ATLAS often tries to use fewer, more targeted, SRs
- Complementary approaches!





• • • • • • • • • • •

Phys. Rev. D 96 (2017) 032003

E SQA

## Gluino exclusion limits for various decay modes



34 / 36

### How do these limits impact realistic models?



• • • • • • • • • • • •

- ATLAS and CMS have published most of their results with 36 fb<sup>-1</sup>, preparing for the analysis of the full Run-2 dataset (~ 3× integrated luminosity)
- Experimental searches have become quite complex over the years...
- What's the way forward?
  - continued effort in improving signal selection in "difficult" corners of the phase space: machine learning?
  - tests of realistic models (e.g. pMSSM scans) to identify weak spots of the searches (mass gaps, decay modes...). Being done both by the phenomenology community, and within the experiment collaborations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

# Backup

## Squark limits in simplified models



LHC searches for gluinos and squarks